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ASYMPTOTIC ANALYSIS AND SIMULATION OF MEAN FIRST
PASSAGE TIME FOR ACTIVE BROWNIAN PARTICLES IN 1-D\ast 

SARAFA A. IYANIWURA\dagger AND ZHIWEI PENG\ddagger 

Abstract. Active Brownian particles (ABPs) are a model for nonequilibrium systems in which
the constituent particles are self-propelled in addition to their Brownian motion. Compared to the
well-studied mean first passage time (MFPT) of passive Brownian particles, the MFPT of ABPs is
much less developed. In this paper, we study the MFPT for ABPs in a 1-D domain with absorbing
boundary conditions at both ends of the domain. To reveal the effect of swimming on the MFPT,
we consider an asymptotic analysis in the weak-swimming or small P\'eclet (Pe) number limit. In
particular, analytical expressions for the survival probability and the MFPT are developed up to
\scrO (Pe2). We explore the effects of the starting positions and starting orientations on the MFPT.
Our analysis shows that if the starting orientations are biased towards one side of the domain, the
MFPT as a function of the starting position becomes asymmetric about the center of the domain.
The analytical results were confirmed by the numerical solutions of the full PDE model.

Key words. mean first passage time, asymptotic analysis, active Brownian particles, survival
probability
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1. Introduction. Mean first passage time (MFPT) is the average time-scale for
a stochastic event to first occur [1, 2]. This phenomenon has been applied to many
physical and biological problems [3, 4, 5, 6, 7], such as calculating the time it takes
for a protein to find a binding site on DNA [8], the time it takes for a predator to
find its prey [9], and computing the time it takes for a diffusing molecule to reach
a localized signaling region on a cell membrane [10], among others. The MFPT for
Brownian particles has been studied extensively (see [11, 12, 13, 14, 15, 16, 17, 18]
and the references therein). However, not much has been done on the MFPT for
active Brownian particles (ABPs). An ABP is a model of the self-propelled mo-
tion of active matter systems, such as motile bacteria and synthetic active particles
[19, 20]. In addition to the translational Brownian motion of passive particles, an
ABP exhibits rotational Brownian motion and self-propulsive (or swimming) motion.
At long times, the swimming direction (or orientation) of ABPs is randomized due to
rotational Brownian motion. A second model for bacteria locomotion that is closely
related to the ABP model is the so-called run-and-tumble particle (RTP) model. In-
stead of continuous rotational diffusion, RTPs undergo discrete tumbling events that
randomize their swimming direction [21]. Some articles that looked at the first passage
time for ABPs include [22, 23, 24, 25, 26, 27, 28, 29, 30]. In [23], the MFPT for ABPs
was studied numerically in a 1-D domain. If the particle's orientation is restricted
to 1-D, the orientation space becomes binary, i.e., the particle can either take the
right orientation or the left orientation. Due to the discrete orientation space in 1-D,
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1080 SARAFA A. IYANIWURA AND ZHIWEI PENG

no distinction will be made between the ABP and RTP models. For both models,
the random orientational dynamics reduces to a random walk between positive and
negative orientations.

The first passage time distribution and its mean have been calculated for passive
Brownian particles in different domains [11, 14, 15, 16, 17, 18, 31, 32, 33, 34, 35].
Many of these studies used asymptotic analysis to calculate the MFPT for a Brown-
ian particle to escape a domain, either through a small absorbing trap localized in
the domain or through a small opening on the boundary of the domain [11, 14, 17].
Other studies have looked at optimizing trap configurations that minimize MFPT
in different geometries for stationary and moving traps [15, 18, 34, 36], and calcu-
lating the first passage time (FPT) for Brownian particles with stochastic resetting
[32, 37, 38, 39, 40, 41, 42]. In contrast to the extensive research on the FPT/MFPT for
(passive) Brownian particles, the FPT for active Brownian particles [22, 23, 24, 26, 30]
in different domains is much less understood. Notably, analytical progress is lacking
in part due to the added complexity of rotational Brownian motion and swimming,
which introduces additional orientational degrees of freedom. For passive Brownian
motion, one can often start the analysis from the partial differential equation (PDE)
governing the FPT distribution [2]. However, for active Brownian motion in arbitrary
dimensions, such an equation is not yet available, and one often needs to consider the
full probability density function of finding the ABP at a given position, orientation,
and time. With a solution to the probability density function in space and time, one
can then obtain the survival probability and the resulting MFPT.

For active particles, analytical progress has been made towards the characteri-
zation of the diffusion and FPT in both one and higher dimensions [30, 43, 44, 45].
In Malakar et al. [30], the first passage properties of RTPs on the semi-infinite line,
with and without translational diffusion, and the exit probabilities and times in a
finite interval were considered. In the absence of translational diffusion, exact ex-
pressions for the MFPT of RTPs have been obtained in 1-D with different boundary
conditions [24, 46]. Using particle-based Brownian dynamics (stochastic) simulations,
Khatami et al. [47] showed that the MFPT of the particle starting from the center of
a maze decreases as the swim speed increases. Furthermore, they showed that ABPs
escape faster from the center of the maze as compared to RTPs starting from the
same location. Other studies have considered the escape rate of ABPs with transient
activity [26] or under confinement [48, 49, 50, 51, 52, 53, 54, 55]. More recent studies
have considered the dynamics of ABPs under different stochastic resetting protocols
[45, 56, 57, 58, 59, 60].

In this study, we consider the MFPT of ABPs in a 1-D domain with absorbing
boundary conditions at both ends of the domain. The main aim of this study is to
understand the effect of the swimming speed of ABPs on the MFPT. If the swim speed
is zero, one recovers the MFPT of passive Brownian particles. To understand how
the swimming motion affects the MFPT, we consider an asymptotic analysis in the
weak-swimming limit. This analysis allows us to reveal the first effects of swimming
on the MFPT distribution in contrast to the results for passive Brownian particles.

Consider a 1-D domain \Omega \equiv [ - R,R], where R \in \scrZ +, and let P+(x, t) and P - (x, t)
be the density of positive-oriented (pointing to the right direction) and negative-
oriented (pointing to the left direction) ABPs, respectively, at position x at time t.
Due to the run-and-tumble nature of ABPs, positive-oriented particles can change
orientation to the left. Likewise, the negative-oriented particles can change their
orientation to the right. Based on this, the dynamics of P+ and P - satisfy the
following PDEs:
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MFPT FOR ACTIVE BROWNIAN PARTICLES IN 1-D 1081

\partial P+

\partial t
= - \partial 

\partial x

\Bigl( 
vsP+  - DT

\partial P+

\partial x

\Bigr) 
 - 1

\tau 
P+ +

1

\tau 
P - , x\in \Omega , t > 0;(1.1a)

\partial P - 
\partial t

= - \partial 

\partial x

\Bigl( 
 - vsP -  - DT

\partial P - 
\partial x

\Bigr) 
+

1

\tau 
P+  - 1

\tau 
P - ,(1.1b)

where vs and DT are the dimensional uniform swimming speed and diffusivity of
the ABPs, respectively, and 1/\tau is the tumbling rate of the particles, that is, the
rate at which the particles switch from positive orientation to negative orientation
and vice versa. This implies that \tau is the time it takes for a particle to change its
orientation. In (1.1a) and (1.1b), we have assumed that the particles change their
orientations from right to left and vice versa at the same rate. We specify Dirichlet
boundary conditions, P\pm (\pm R, t) = 0, at the two ends of the domain. These boundary
conditions impose that an ABP ``vanishes"" or is absorbed when it hits the boundaries.
In addition, we impose the following initial conditions:

P+(x,0) = \eta \delta (x - x0) and P - (x,0) = (1 - \eta ) \delta (x - x0),(1.1c)

where \delta (x - x0) is the Dirac delta function localized at x0, and \eta \in [0,1] is the fraction
of particles located at x0 at t = 0 with positive orientation. This model follows
a similar framework to the model of [24, 46]. However, their model only considers
RTPs without diffusion (DT = 0). We define the total density of particles at position x
at time t as n(x, t) = P+(x, t)+P - (x, t) and f(x, t) = P+(x, t) - P - (x, t). Upon adding
(1.1a) and (1.1b), and subtracting (1.1b) from (1.1a) in two different operations, we
obtained a coupled PDE system for n(x, t) and f(x, t), given by

\partial n

\partial t
= - \partial 

\partial x

\Bigl( 
vs f  - DT

\partial n

\partial x

\Bigr) 
, x\in \Omega , t > 0 ;(1.2a)

\partial f

\partial t
= - \partial 

\partial x

\Bigl( 
vs n - DT

\partial f

\partial x

\Bigr) 
 - 2

\tau 
f.(1.2b)

As shown in (1.2a), ABPs are transported by their swimming motion in addition
to Brownian diffusion. One can recover the diffusion equation for the total density
of particles n(x, t) for passive Brownian particles by setting vs = 0 in (1.2a). The
boundary and initial conditions for the coupled PDE system (1.2a) and (1.2b) are
given by

n(\pm R, t) = 0 and f(\pm R, t) = 0;(1.2c)

n(x,0) = \delta (x - x0) and f(x,0) = (2\eta  - 1) \delta (x - x0).(1.2d)

Our goal is to use (1.2) to study the MFPT for ABPs in \Omega , in the weak-swimming
limit. We define the survival probability, S(t;x0), as the probability that an ABP
that starts at position x0 \in \Omega at time t= 0 is still in the domain \Omega at time t > 0. It
is given by

S(t;x0) =

\int 
\Omega 

n(x, t) dx,(1.3)

where n(x, t) is the total density of particles at position x at time t. In terms of
the survival probability S(t;x0), we define the first passage time (FPT) distribution
F (t;x0) for an ABP, starting at position x0 \in \Omega at time t= 0, to escape the domain
\Omega (through its boundaries) as

F (t;x0) = - \partial S(t;x0)

\partial t
.(1.4)
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1082 SARAFA A. IYANIWURA AND ZHIWEI PENG

Similarly, we define the MFPT for an ABP as the average time-scale for the particle
to escape the domain, starting from a position within the domain. For a particle
starting at position x0 \in \Omega at time t = 0, the MFPT, \mu (x0), is computed from the
first passage time distribution (1.4) as follows [2]:

\mu (x0) =

\int \infty 

0

\tau F (\tau ;x0)d\tau .(1.5)

Using (1.3) and (1.4), we derive an expression for the MFPT, \mu (x0), in terms of the
survival probability, S(t;x0), given by

\mu (x0) =

\int \infty 

0

S(t;x0) dt,(1.6)

provided that S(t) decays to zero faster than 1/t as t\rightarrow \infty . This formula will be used
to compute the MFPT in this study.

2. Weak-swimming asymptotic analysis. We analyze the coupled PDE sys-
tem (1.2) in the weak-swimming regime. In this regime, we assume that the swimming
speed of the ABPs is small and use asymptotic analysis to derive an approximate so-
lution to the coupled system. We nondimensionalize the PDEs in (1.2) by scaling x
with the length-scale of the domain R and t with the diffusive time-scale R2/DT to
obtain

\partial n

\partial t
= - \partial 

\partial x

\biggl( 
Pef  - \partial n

\partial x

\biggr) 
, x\in \Omega u \equiv [ - 1,1], t > 0 ;(2.1a)

\partial f

\partial t
= - \partial 

\partial x

\biggl( 
Pen - \partial f

\partial x

\biggr) 
 - 2\beta f ;(2.1b)

n(\pm 1, t) = 0 and f(\pm 1, t) = 0 ;(2.1c)

n(x,0) = \delta (x - x0) and f(x,0) = (2\eta  - 1) \delta (x - x0),(2.1d)

where Pe = (vsR)/DT is the swimming P\'eclet number and \beta = R2/(\tau DT ). For
fixed values of R and DT , Pe is directly proportional to the dimensional swimming
speed, and \beta is proportional to the tumbling rate of the particles. We analyze the
dimensionless coupled PDE system (2.1) in the weak-swimming limit, i.e., for Pe\ll 1,
using asymptotic analysis.

We begin our analysis by expanding n(x, t) and f(x, t) in terms of Pe \ll 1 as
follows:

n(x, t) = n0(x, t) + Pen1(x, t) + Pe2 n2(x, t) + \cdot \cdot \cdot ,(2.2a)

f(x, t) = f0(x, t) + Pef1(x, t) + Pe2 f2(x, t) + \cdot \cdot \cdot .(2.2b)

Similarly, we expand the survival probability S(t) and MFPT \mu as

S(t) = S0(t) + PeS1(t) + Pe2 S2(t) + \cdot \cdot \cdot ,(2.3a)

\mu = \mu 0 + Pe\mu 1 + Pe2 \mu 2 + \cdot \cdot \cdot .(2.3b)

Note that the survival probability (S(t)) and the MFPT (\mu ) are dimensionless since
n and f are dimensionless. In particular, \mu is obtained by scaling the dimensional
MFPT by the diffusive time-scale R2/DT . Upon substituting (2.2) into (2.1) and
collecting terms in powers of Pe, we obtain the leading-order problem, given by
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MFPT FOR ACTIVE BROWNIAN PARTICLES IN 1-D 1083

\partial n0

\partial t
=

\partial 2n0

\partial x2
, x\in \Omega u, t > 0 ;(2.4a)

\partial f0
\partial t

=
\partial 2f0
\partial x2

 - 2\beta f0 ;(2.4b)

n0(\pm 1, t) = 0 and f0(\pm 1, t) = 0 ;(2.4c)

n0(x,0) = \delta (x - x0) and f0(x,0) = (2\eta  - 1) \delta (x - x0).(2.4d)

We notice from (2.4) that the leading-order PDEs are decoupled, and the density of
particles n0(x, t) satisfies the diffusion equation. At \scrO (Pe), we have

\partial n1

\partial t
=

\partial 2n1

\partial x2
 - \partial f0

\partial x
, x\in \Omega u \equiv [ - 1,1], t > 0 ;(2.5a)

\partial f1
\partial t

= - \partial n0

\partial x
+

\partial 2f1
\partial x2

 - 2\beta f1 ;(2.5b)

n1(\pm 1, t) = 0 and f1(\pm 1, t) = 0 ;(2.5c)

n1(x,0) = 0 and f1(x,0) = 0.(2.5d)

The \scrO (Pe2) problem is given by

\partial n2

\partial t
=

\partial 2n2

\partial x2
 - \partial f1

\partial x
, x\in \Omega u \equiv [ - 1,1], t > 0 ;(2.6a)

\partial f2
\partial t

= - \partial n1

\partial x
+

\partial 2f2
\partial x2

 - 2\beta f2 ;(2.6b)

n2(\pm 1, t) = 0 and f2(\pm 1, t) = 0 ;(2.6c)

n2(x,0) = 0 and f2(x,0) = 0.(2.6d)

We shall solve each of the problems (2.4), (2.5), and (2.6) and use their solutions to
construct a three-term asymptotic expansion for the MFPT.

We begin with the leading-order problem (2.4). Using separation of variables, we
obtain that n0(x, t) satisfies

n0(x, t) =

\infty \sum 
n=0

\Bigl[ 
cos (\lambda 1,n x0) cos (\lambda 1,n x)e

 - \lambda 2
1,n t + sin(\lambda 2,nx0) sin (\lambda 2,nx)e

 - \lambda 2
2,n t

\Bigr] 
,

(2.7)

where \lambda 1,n = (2n+ 1)\pi /2 and \lambda 2,n = n\pi for n \in \BbbZ . We use the survival probability
formula in (1.3) together with the asymptotic expansion in (2.3a) to construct the
leading-order survival probability, S0(t;x0), as an integral of n0(t;x0). Evaluating
this integral, we obtain

S0(t;x0) = 2

\infty \sum 
n=0

( - 1)n

\lambda 1,n
cos (\lambda 1,n x0)e

 - \lambda 2
1,n t.(2.8)

To solve the \scrO (Pe) problem (2.5), we guess a solution of the form

n1(x, t) =

\infty \sum 
n=0

\Bigl[ 
cos (\lambda 1,n x)pn(t) + sin (\lambda 2,nx) qn(t)

\Bigr] 
,(2.9)

where pn(t) and qn(t) are functions to be determined. Note that (2.9) satisfies the
boundary condition (2.5c) by construction. At t = 0, we have n1(x,0) = 0, which
implies that pn(0) = qn(0) = 0 for all n. Integrating n1 as given in (2.9) over the
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1084 SARAFA A. IYANIWURA AND ZHIWEI PENG

domain, we obtain the survival probability at \scrO (Pes), given by

S1(t) = 2

\infty \sum 
n=0

( - 1)n

\lambda 1,n
pn(t).(2.10)

Observe from the PDE for n1(x, t) in (2.5) that we need f0(x, t) to solve for n1, since
the equation for n1 contains a derivative of f0 with respect to x. Using an approach
similar to that used to solve for n0, we solve the f0(x, t) problem in (2.4) to get

f0(x, t) =(2\eta  - 1)

\infty \sum 
n=0

\Bigl[ 
cos (\lambda 1,n x0) cos (\lambda 1,n x)e

 - (2\beta +\lambda 2
1,n) t(2.11)

+ sin(\lambda 2,nx0) sin (\lambda 2,nx)e
 - (2\beta +\lambda 2

2,n) t
\Bigr] 
.

Upon substituting (2.9) and (2.11) into (2.5a) and using the orthogonality properties
of the sine and cosine functions, we derive ordinary differential equations (ODEs) for
pn(t) and qn(t), given by

p\prime n(t) + \lambda 2
1,n pn(t) = - (2\eta  - 1)

\infty \sum 
m=0

2m sin(\lambda 2,m x0)Am,n e
 - 
\bigl( 
2\beta +\lambda 2

2,m

\bigr) 
t;(2.12)

q\prime n(t) + \lambda 2
2,n qn(t) = - (2\eta  - 1)

\infty \sum 
m=0

(2m+ 1)cos (\lambda 1,m x0)Bm,n e
 - (2\beta +\lambda 2

1,m) t,(2.13)

where \lambda 1,m = (2m + 1)\pi /2 and \lambda 2,m = m\pi for m \in \BbbZ , and Am,n and Bm,n for
n,m= 0,1,2, . . . , are defined as

Am,n =
\pi 

2

\int 1

 - 1

cos(\lambda 2,mx) cos(\lambda 1,nx) dx and Bm,n =
\pi 

2

\int 1

 - 1

sin(\lambda 1,mx) sin(\lambda 2,nx) dx.

(2.14)

Evaluating the integrals in (2.14) gives

Am,n =
( - 1)m+n

1 + 2(m+ n)
+

( - 1)m - n

1 - 2(m - n)
and Bm,n = - ( - 1)m+n

1 + 2(m+ n)
+

( - 1)m - n

1 + 2(m - n)
.

(2.15)

We impose the initial conditions pn(0) = 0 and qn(0) = 0 for all n= 0,1,2, . . ., on the
ODEs in (2.12) and (2.13). Using the method of integrating factor, we solve these
ODE problems to obtain

pn(t) = - 
\infty \sum 

m=0

2m(2\eta  - 1) sin(\lambda 2,m x0)Am,n

\lambda 2
1,n  - (2\beta + \lambda 2

2,m)

\biggl[ 
e - 

\bigl( 
2\beta +\lambda 2

2,m

\bigr) 
t  - e - \lambda 2

1,nt

\biggr] 
;(2.16)

qn(t) = - 
\infty \sum 

m=0

(2m+ 1)(2\eta  - 1) cos(\lambda 1,m x0)Bm,n

\lambda 2
2,n  - (2\beta + \lambda 2

1,m)

\Bigl[ 
e - (2\beta +\lambda 2

1,m)t  - e - \lambda 2
2,nt

\Bigr] 
.(2.17)

Upon substituting (2.16) into (2.10), we obtain the survival probability at \scrO (Pe) as

S1(t;x0) =

\infty \sum 
n=0

\infty \sum 
m=0

\Psi n\Phi n,m

\biggl( 
e - 

\bigl( 
2\beta +\lambda 2

2,m

\bigr) 
t  - e - \lambda 2

1,nt

\biggr) 
,(2.18a)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

7/
24

 to
 1

29
.1

28
.2

16
.3

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



MFPT FOR ACTIVE BROWNIAN PARTICLES IN 1-D 1085

where

\Psi n =
2( - 1)n

\lambda 1,n
and \Phi n,m =

2m(1 - 2\eta ) sin(\lambda 2,m x0)Am,n

\lambda 2
1,n  - (2\beta + \lambda 2

2,m)
.(2.18b)

From (2.8) and (2.18), we construct a two-term asymptotic expansion for the survival
probability of the ABPs in \Omega u in the weak-swimming (Pe\ll 1) regime, given by

S(t;x0) =

\infty \sum 
n=0

\Psi n cos (\lambda 1,n x0)e
 - \lambda 2

1,n t(2.19)

+ Pe

\infty \sum 
n=0

\Psi n

\infty \sum 
m=0

\Phi n,m

\Bigl( 
e - (2\beta +\lambda 2

2,m) t  - e - \lambda 2
1,n t

\Bigr) 
+\scrO (Pe2).

We remark that the leading-order term in the survival probability in (2.19) corre-
sponds to the survival probability of a passive Brownian particle in \Omega u, and the first
effect of swimming on the survival probability comes at the \scrO (Pe) term. Integrat-
ing (2.19), we construct a two-term asymptotic expansion for the MFPT (cf. (2.3b)),
\mu (x0) = \mu 0 + Pe\mu 1 +\scrO (Pe2), where

\mu 0 = 2

\infty \sum 
n=0

( - 1)n

\lambda 3
1,n

cos (\lambda 1,n x0) and \mu 1 =

\infty \sum 
n=0

2( - 1)n

\lambda 3
1,n

\infty \sum 
m=0

2m(1 - 2\eta )Am,n

2\beta + \lambda 2
2,m

sin(\lambda 2,m x0).

(2.20)

In the preceding equation, \lambda 1,n = (2n+ 1)\pi /2, \lambda 2,n = n\pi , and Am,n is as defined in
(2.15).

We observe that when the particles start from the midpoint of the domain \Omega u

(x0 = 0), the \scrO (Pe) term in the MFPT expansion vanishes due to symmetry, i.e.,
\mu 1 = 0. In this case, the first effect of swimming on the MFPT comes at \scrO (Pe2), as
we shall show later. We also note that regardless of the starting position x0, \mu 1 = 0
when \eta = 1/2. That is, the \scrO (Pe) MFPT vanishes if we start with the particles
having an equal probability of pointing to the positive and negative sides (unbiased
starting orientations). To see this, first notice that f0 = 0 if \eta = 1/2; as a result, from
(2.5) we then obtain n1 = 0 and accordingly \mu 1 = 0.

As noted above, when x0 = 0 or \eta = 1/2, the \scrO (Pe) MFPT vanishes and we
need to continue the asymptotic analysis to higher order. To this end, we consider
the \scrO (Pe2) problem given in (2.6). To solve this problem, we need to first determine
f1(x, t). We consider the PDE in (2.5b) and guess a solution of the form

f1(x, t) =

\infty \sum 
n=0

cos(\lambda 1,n x) un(t) + sin(\lambda 2,n x)wn(t),(2.21)

where we recall that \lambda 1,n = (2n+1)\pi /2 and \lambda 2,n = n\pi for n\in \BbbZ , and un(t) and wn(t)
for n= 0,1,2, . . . are functions to be determined. Upon substituting n0(x, t) as given
in (2.7) and f1(x, t) as given in (2.21) into (2.5b), we use the orthogonality properties
of sine and cosine on [ - 1,1] to derive ODEs for un(t) and wn(t), given by

\.un + \chi 2
1,n un = - 2

\pi 

\infty \sum 
m=0

\lambda 2,mAm,n sin(\lambda 2,m x0)e
 - \lambda 2

2,m t, un(0) = 0 ;(2.22)

\.wn + \chi 2
2,nwn =

2

\pi 

\infty \sum 
m=0

\lambda 1,mBm,n cos(\lambda 1,m x0)e
 - \lambda 2

1,m t, wn(0) = 0 ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1086 SARAFA A. IYANIWURA AND ZHIWEI PENG

where \chi 2
1,n = \lambda 2

1,n+2\beta , \chi 2
2,n = \lambda 2

2,n+2\beta , and Am,n and Bm,n for n,m= 0,1,2, . . . are
as defined in (2.15). Solving the ODEs in (2.22), we obtain

un = - 2

\pi 

\infty \sum 
m=0

\lambda 2,m
Am,n sin(\lambda 2,m x0)

(\chi 2
1,n  - \lambda 2

2,m)

\Bigl( 
e - \lambda 2

2,m t  - e - \chi 2
1,n t

\Bigr) 
,

wn =
2

\pi 

\infty \sum 
m=0

\lambda 1,m
Bm,n cos(\lambda 1,m x0)

(\chi 2
2,n  - \lambda 2

1,m)

\Bigl( 
e - \lambda 2

1,m t  - e - \chi 2
2,n t

\Bigr) 
.

(2.23)

We substitute (2.23) into (2.21) to construct the solution for f1(x, t), given by

f1(x, t) = - 2

\pi 

\infty \sum 
n=0

\infty \sum 
m=0

\Biggl[ 
cos(\lambda 1,n x) \lambda 2,m

Am,n sin(\lambda 2,m x0)

(\chi 2
1,n  - \lambda 2

2,m)

\Bigl( 
e - \lambda 2

2,m t  - e - \chi 2
1,n t

\Bigr) (2.24)

 - sin(\lambda 2,n x)\lambda 1,m
Bm,n cos(\lambda 1,m x0)

(\chi 2
2,n  - \lambda 2

1,m)

\Bigl( 
e - \lambda 2

1,m t  - e - \chi 2
2,n t

\Bigr) \Biggr] 
.

Now, we consider the PDE for n2(x, t) given in (2.6) and guess a solution of the
form

n2(x, t) =

\infty \sum 
n=0

cos(\lambda 1,n x) gn(t) + sin(\lambda 2,n x) hn(t),(2.25)

where \lambda 1,n = (2n + 1)\pi /2 and \lambda 2,n = n\pi for n \in \BbbZ , and gn(t) and hn(t) for n =
0,1,2, . . . , are functions to be determined. Substituting (2.24) and (2.25) into (2.6a)
and using the orthogonality properties of sine and cosine on [ - 1,1], we construct ODE
problems for gn(t) and hn(t), given by

\.gn + \lambda 2
1,n gn

(2.26)

= - 4

\pi 2

\infty \sum 
m=0

\lambda 2,mAm,n

\infty \sum 
k=0

\lambda 1,k
Bk,m cos(\lambda 1,k x0)

(\chi 2
2,m  - \lambda 2

1,k)

\Bigl( 
e - \lambda 2

1,k t  - e - \chi 2
2,m t

\Bigr) 
, gn(0) = 0 ;

\.hn + \lambda 2
2,n hn

= - 4

\pi 2

\infty \sum 
m=0

\lambda 1,mBm,n

\infty \sum 
k=0

\lambda 2,k
Ak,m sin(\lambda 2,k x0)

(\chi 2
1,m  - \lambda 2

2,k)

\Bigl( 
e - \lambda 2

2,k t  - e - \chi 2
1,m t

\Bigr) 
, hn(0) = 0 ,

where Am,n and Bm,n for n,m = 0,1,2, . . . are as defined in (2.15). We solve the
ODEs in (2.26) to obtain

gn(t) = - 4

\pi 2

\infty \sum 
m=0

\lambda 2,mAm,n

\infty \sum 
k=0

\lambda 1,kBk,m cos(\lambda 1,k x0)

(\chi 2
2,m  - \lambda 2

1,k)
(2.27)

\cdot 

\left[  
\Bigl( 
e - \lambda 2

1,k t  - e - \lambda 2
1,n t

\Bigr) 
(\lambda 2

1,n  - \lambda 2
1,k)

 - 

\Bigl( 
e - \chi 2

2,m t  - e - \lambda 2
1,n t

\Bigr) 
(\lambda 2

1,n  - \chi 2
2,m)

\right]  ,
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MFPT FOR ACTIVE BROWNIAN PARTICLES IN 1-D 1087

hn(t) = - 4

\pi 2

\infty \sum 
m=0

\lambda 1,mBm,n

\infty \sum 
k=0

\lambda 2,kAk,m sin(\lambda 2,k x0)

(\chi 2
1,m  - \lambda 2

2,k)

\cdot 

\left[  
\Bigl( 
e - \lambda 2

2,k t  - e - \lambda 2
2,n t

\Bigr) 
(\lambda 2

2,n  - \lambda 2
2,k)

 - 

\Bigl( 
e - \chi 2

1,m t  - e - \lambda 2
2,n t

\Bigr) 
(\lambda 2

2,n  - \chi 2
1,m)

\right]  .

Therefore, the \scrO (Pe2) density of particles n2(x, t) can be derived explicitly by sub-
stituting the functions gn(t) and hn(t) as given in (2.27) into (2.25). Integrating the
resulting expression with respect to x over the domain [ - 1,1], we obtain the survival
probability

S2(t) = - 8

\pi 2

\infty \sum 
n=0

( - 1)n

\lambda 1,n

\infty \sum 
m=0

\lambda 2,mAm,n

\infty \sum 
k=0

\lambda 1,kBk,m cos(\lambda 1,k x0)

(\chi 2
2,m  - \lambda 2

1,k)
(2.28)

\cdot 

\left[  
\Bigl( 
e - \lambda 2

1,k t  - e - \lambda 2
1,n t

\Bigr) 
(\lambda 2

1,n  - \lambda 2
1,k)

 - 

\Bigl( 
e - \chi 2

2,m t  - e - \lambda 2
1,n t

\Bigr) 
(\lambda 2

1,n  - \chi 2
2,m)

\right]  .

Note that hn(t) vanishes from the survival probability since
\int 1

 - 1
sin(\lambda 2,n x) dx = 0.

Lastly, we integrate S2(t) with respect to t to obtain the MFPT at \scrO (Pe2), given by

\mu 2(x0) =
8

\pi 2

\infty \sum 
n=0

( - 1)n+1

\lambda 3
1,n

\infty \sum 
m=0

\lambda 2,m

\chi 2
2,m

Am,n

\infty \sum 
k=0

Bk,m cos(\lambda 1,k x0)

\lambda 1,k
.(2.29)

We combine (2.20) and (2.29) to construct a three-term asymptotic expansion for the
MFPT, given by

\mu (x0) = 2

\infty \sum 
n=0

( - 1)n

\lambda 3
1,n

cos (\lambda 1,n x0) + Pe

\infty \sum 
n=0

2( - 1)n

\lambda 3
1,n

\infty \sum 
m=0

2m(1 - 2\eta )Am,n

2\beta + \lambda 2
2,m

sin(\lambda 2,m x0)

(2.30)

+ Pe2
\infty \sum 

n=0

8

\pi 2

( - 1)n+1

\lambda 3
1,n

\infty \sum 
m=0

\lambda 2,m

\chi 2
2,m

Am,n

\infty \sum 
k=0

Bk,m cos(\lambda 1,k x0)

\lambda 1,k
+\scrO (Pe3).

Figure 1 shows the plot for each term in the asymptotic expansion (2.30) for
different values of \beta : \beta = 0.1 (solid line), \beta = 1 (dashed line), and \beta = 10 (dash-dot
line), as a function of the starting position, x0. The leading-order MFPT is shown on
the left, the \scrO (Pe) term in the middle, and the \scrO (Pe2) term on the right. For these
results, truncated sums are computed using 100 terms of each series in (2.30) and
\eta = 1, which corresponds to all the particles starting with positive orientation, i.e.,
pointing to the right. The leading-order MFPT is the (passive) Brownian result and
thus does not depend on \beta (cf. (2.4)). The Brownian MFPT obtains its maximum
when particles are started at the center point of the 1-D domain and decreases as
the starting point moves closer to the boundaries. The Brownian MFPT profile as a
function of x0 is symmetric. The first effect of swimming on the MFPT is obtained at
\scrO (Pe). We observe that the contribution of the \scrO (Pe) correction term to the MFPT
depends on the starting position with the least contribution when the particles start
close to the two ends of the domain or in the middle of the domain (at the origin).
More importantly, at \scrO (Pe), the swimming motion can either increase or decrease
the MFPT depending on the starting position. Because initially all particles started
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−1 0 1

x0

0.0

0.2

0.4

µ
0

−1 0 1

x0

−0.05

0.00

0.05

µ
1

−1 0 1

x0

−0.04

−0.02

0.00

µ
2

Fig. 1. Contribution of the asymptotic terms to the MFPT. Plots of each term in the asymptotic
expansion (2.30) as a function of the particles' starting position (x0) for different values of \beta : \beta = 0.1
(solid line), \beta = 1 (dashed line), and \beta = 10 (dash-dot line). (a) Leading-order MFPT (\mu 0), (b)
\scrO (Pe) MFPT (\mu 1), and (c) \scrO (Pe2) MFPT (\mu 2). Results were computed with 100 terms of each
series in (2.30) and \eta = 1.

pointing to the right (\eta = 1), the MFPT is decreased when x0 \in (0,1) and increases
when x0 \in ( - 1,0). The reduction in the MFPT for x0 \in (0,1) is because the particles
can easily swim to the right boundary and exit the domain at x= 1 since they started
with positive orientation. As can be seen in Figure 1b, there is an optimal value
of the starting position that maximizes the reduction of the MFPT at \scrO (Pe). The
governing equation for n1 is a nonhomogeneous diffusion equation ((2.5a)) in which
the forcing term  - \partial f0/\partial x ultimately leads to the observed nonmonotonic behavior in
\mu 1. Furthermore, the starting position that maximizes (or minimizes) \mu 1 depends on
\beta . As \beta increases, the maximum shifts towards the left boundary (at x =  - 1) while
the minimum shifts towards the right boundary (at x = 1). The \scrO (Pe2) correction
term decreases the MFPT regardless of the starting position.

We also observe from the results in Figure 1 that the effects of the \scrO (Pe) and
\scrO (Pe2) correction terms on the MFPT decrease as \beta increases. Recall that \beta =
R2/(\tau DT ), where R is the length-scale of the domain, DT is the dimensional diffusion
rate of the particles, and 1/\tau is the tumbling rate of the particles (the rate at which
the particles switch their orientation). For fixed values of R and DT , an increase
in \beta corresponds to an increase in the tumbling rate of the particles. When the
particles tumble quickly, they lose their persistent swim motion and behave more like
Brownian particles. As a result, the effect of the correction terms in (2.30) decreases
as \beta increases.

The results in Figure 2 show comparisons of the analytical MFPT (\mu ) in (2.30)
and the numerical solution of the full PDE (2.1) as a function of the P\'eclect num-
ber (Pe) for (a) x0 = 0.5 and \eta = 1 and (b) x0 = 0 and \eta = 0.5. For each plot in
this figure, we show the two- and three-term approximation of the MFPT (2.30) and
the numerical MFPT. These results show that the MFPT decreases as Pe increases.
Recall that Pe = (vsR)/DT , which implies that Pe is directly proportional to the
dimensional swimming speed of the particles (vs). For fixed values of R and DT , in-
creasing Pe corresponds to increasing the swimming speed of the particles. Therefore,
as Pe increases, the particles swim faster, making it easier to exit the domain and
decrease the MFPT, as shown in the results. The asymptotic approximation agrees
well with the numerical solution for small values of Pe. However, the two solutions
deviate as Pe increases. As expected, the three-term asymptotic MFPT agrees better
with the numerical solution for higher values of Pe than the two-term expansion. In
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10−2 10−1 100

Pe

0.30

0.32

0.34

0.36

µ

Two-term asymptotics

Three-term asymptotics

Numerics

10−2 10−1 100

Pe

0.47

0.48

0.49

0.50

µ

Two-term asymptotics

Three-term asymptotics

Numerics

Fig. 2. Asymptotic and numerical MFPT (low tumbling rate). Comparisons of the asymptotic
approximation (2.30) and the numerical solution of the full PDE (2.1). (a) Particles' starting posi-
tion, x0 = 0.5 and \eta = 1 (all the particles were initially pointing to the right). (b) Particles' starting
position, x0 = 0 and \eta = 0.5 (half of the particles were initially pointing in opposite directions).
Results were computed with 100 terms of each series in (2.30) and \beta = 1.

Figure 2a, where the particles start from x0 = 0.5 and point to the right, the two-
term asymptotic expansion agrees with the numerical solution up to Pe \approx 0.2, after
which it overestimates the MFPT as Pe continues to increase. On the other hand,
the three-term asymptotic approximation agrees with the numerical solution up to
Pe\approx 0.7 and then underestimates the MFPT as Pe increases.

In Figure 2b, the particles started at the origin (x0 = 0), with half of them
pointing to the right while the other half is pointing to the left, i.e., \eta = 1/2. As
mentioned earlier, the \scrO (Pe) correction term in the MFPT expansion (2.30) vanishes
when the particles start from the origin. As a result of this, the two-term expansion
of the MFPT reduces to the leading-order MFPT, which is independent of both the
swimming speed and the P\'eclet number. This corresponds to the horizontal line in
Figure 2b. Similar to the results in Figure 2a, the three-term MFPT approximation
underestimates the MFPT as Pe increases. We used 100 terms of the series in (2.30)
and \beta = 1 for the results in this figure.

In Figure 3, we repeat the comparisons shown in Figure 2 but for \beta = 10, i.e.,
a higher tumbling rate. Here, the asymptotic MFPT results agree more with the
numerical result than those in Figure 2. In addition, the three-term expansion agrees
more with the numerical result than the two-term expansion.

Next, we present contour plots of the MFPT (2.30) as a function of the particles'
starting position (x0) and P\'eclet number (Pe) for different scenarios: (a) \beta = 1
and \eta = 0.5, (b) \beta = 1 and \eta = 1, (c) \beta = 10 and \eta = 0.5, and (d) \beta = 10 and
\eta = 1. For Figures 4a and 4c, where half of the particles started by facing opposite
directions (\eta = 0.5), the MFPT is symmetric about the center of the domain. In this
symmetric case, the maximum in MFPT is achieved when the particles start from
the center (x0 = 0) of the domain. The variations in the MFPT are weak for x0

values close to the origin when \beta = 1, and this range of x0 increases as Pe increases
(Figure 4a). However, the MFPT decreases more rapidly as x0 shifts away from the
origin and towards the two domain boundaries (Figure 4c) when \beta is increased to
\beta = 10.
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10−2 10−1 100
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0.375
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Two-term asymptotics

Three-term asymptotics

Numerics
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Pe

0.4875
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0.4975

0.5000

µ

Two-term asymptotics

Three-term asymptotics

Numerics

Fig. 3. Asymptotic and numerical MFPT (high tumbling rate). Comparisons of the asymptotic
approximation (2.30) and the numerical solution of the full PDE (2.1). (a) Particles' starting posi-
tion, x0 = 0.5 and \eta = 1 (all the particles were initially pointing to the right). (b) Particles' starting
position, x0 = 0 and \eta = 0.5 (half of the particles were initially pointing in opposite directions).
Results were computed with 100 terms of each series in (2.30) and \beta = 10.
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Fig. 4. MFPT computed from the full PDE. Contour plots of MFPT (\mu ) computed from nu-
merical simulations of the full PDE (2.1) for different starting position (x0) and P\'eclet number
(Pe). (a) \beta = 1 and \eta = 0.5, (b) \beta = 1 and \eta = 1, (c) \beta = 10 and \eta = 0.5, and (d) \beta = 10 and \eta = 1.
Note: \eta = 1 implies that all the particles were initially pointing to the right, and \eta = 0.5 means half
of the particles were initially pointing to the right while the other half were pointing to the left.
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MFPT FOR ACTIVE BROWNIAN PARTICLES IN 1-D 1091

In Figures 4b and 4d, where all the particles started by pointing to the right, the
MFPT is not symmetric about the origin. Rather it is lower for x0 \in (0,1) compared
to the second half of the domain, ( - 1,0). As the particles' swimming speed increases,
the effect of the initial orientation of the particles on the MFPT increases, making the
lack of symmetry in the MFPT become more apparent. Since the particles started by
pointing to the right, they can easily exit the domain when they start from the right
half of the domain compared to the left half of the domain. Although the results in
Figures 4b and 4d were computed for particles that started by pointing to the right,
analogous results are expected when all the particles start by pointing to the left. In
that case, one would expect the MFPT to be lower for the particles starting on the
left half of the domain than those starting from the right half.

3. Discussion. The first passage time distribution and its mean have been stud-
ied extensively for passive Brownian particles [11, 14, 15, 17, 18] and applied to prob-
lems in physical and biological sciences. However, for many biological systems and
processes, the elements are often active and exhibit self-propulsion in addition to
Brownian motion. Despite the commonality of active Brownian motion, not much
has been done in terms of developing a first passage time framework for these pro-
cesses until recently [25, 28, 55, 61]. Here, we used asymptotic analysis to study the
MFPT for ABPs in a 1-D domain with absorbing boundaries at the two ends in a
weak-swimming limit. We construct a three-term asymptotic approximation for the
MFPT in terms of the P\'eclet number, which is directly proportional to the swimming
speed of the particles. Numerical simulations of the full PDE were used to validate
our analytical approximation.

The leading-order term in our asymptotic approximation of the MFPT for ABPs
represents the MFPT for Brownian particles, and the effect of swimming comes in at
the \scrO (Pe) correction term onward. However, our analysis shows that the \scrO (Pe) term
vanishes when the particles start at the origin (x0) or when half of them start by facing
opposite directions (\eta = 1/2). Note that the \scrO (Pe) density of ABPs (n1) is driven by
f0 (see (2.5)). When \eta = 1/2, f0 vanishes, and as a result, we have n1 = 0 and \mu 1 = 0.
In these cases, the correction to the leading-order MFPT comes in at the \scrO (Pe2) term.
The contribution of the \scrO (Pe) term to the MFPT is asymmetric about the center
of the domain. On the other hand, the \scrO (Pe2) is symmetric about the center of the
domain, with the minimum contributions occurring when the particles start close to
the two boundaries of the domain and the maximum contribution occurring when they
start at the origin. The contributions from both the\scrO (Pe) and\scrO (Pe2) terms decrease
as the tumbling rate of the particles increases (Figure 1). As the tumbling rate of the
particles increases, the motion of the ABPs becomes more diffusive, and the effect of
swimming is minimized. As a result, the effect of the correction terms also decreases.

Although our analytical approximation of the MFPT is valid for small swimming
speeds, it still agrees with the MFPT computed numerically by solving the full PDE
model for reasonable values of Pe. As the swimming speed increases, the analytical
MFPT deviates from the numerical MFPT. In this study, we assume that the diffusion
rate of the particles is constant. As expected, the time it takes for the particles to
exit the domain decreases as their swimming speed increases. On the other hand, the
MFPT of the active particles approaches that of Brownian particles as the swimming
speed decreases. As the tumbling rate of the particles increases, their motion becomes
more diffusive, and as a result, the MFPT approaches that of Brownian particles.
When the particles start with half of them pointing to the right and the other half
pointing to the left, the MFPT is symmetric about the center of the domain. However,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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when all the particles start by pointing in a specific direction, the MFPT is skewed
in that direction (Figure 4). This helps to account for the effect of the particles'
swimming and their initial orientation. When all the particles start in the right half
of the domain and point to the right, their MFPT is lower than the MFPT of those
that started by pointing in the same direction but from the left half of the domain. The
higher MFPT for these particles is due to their initial orientation. As the particles'
swimming speed decreases, this effect is minimized.

Although both active and passive Brownian particles undergo translational Brown-
ian motion, our results show that the swimming motion of ABPs leads to a decrease
in their MFPT to exit our 1-D domain compared to Brownian particles. This result
is consistent with observations made in a 2-D maze using particle-based Brownian
dynamics simulations [47]. In [28], the swimming motion of ABPs in a circular disk
with an absorbing boundary is similarly treated using a perturbation expansion, and
the authors also found that the survival probability decays to zero faster as the P\'eclet
number increases. Our work provides some contributions to the growing literature
on the MFPT of ABPs. In particular, the weak-swimming asymptotic analysis al-
lows us to derive explicit series solutions and to reveal the first effect of swimming
on the MFPT in contrast to that of passive particles. We have shown that both the
starting position and orientation play important roles in the behavior of the MFPT
of active particles. Because biologically active particles including motile bacteria and
molecular motors often coexist with other active or passive objects/boundaries, in fu-
ture work it is important to understand the dynamics and first passage properties of
ABPs in complex environments. In the presence of flat boundaries, boundary-particle
interactions such as stickiness and absorption have been studied [25, 61, 62, 63].

An interesting and straightforward extension to this work is to consider different
boundary conditions. For example, one could consider a reflecting boundary condition
at one end of the domain while the other end has an absorbing boundary condition.
In this case, the particle can only escape the domain through the boundary that is
absorbing. The mean first passage time, in this case, may not be trivial, especially
when the particles start by pointing in the direction of the reflecting boundary. It
would also be worthwhile to consider a similar analysis for a domain with partially
absorbing boundaries or stochastic switching boundaries, such as those used in [64],
and for active Brownian particles with stochastic resetting [23, 32, 42, 60]. More work
is required in developing analytical treatment of the first passage properties of active
particles in complex geometries and higher spatial dimensions [27, 28].
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