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Active particles exhibit complex transport dynamics in flows through confined geometries
such as channels or pores. In this work, we employ a generalized Taylor dispersion
(GTD) theory to study the long-time dispersion behavior of active Brownian particles
(ABPs) in an oscillatory Poiseuille flow within a planar channel. We quantify the time-
averaged longitudinal dispersion coefficient as a function of the flow speed, flow oscillation
frequency, and particle activity. In the weak-activity limit, asymptotic analysis shows that
activity can either enhance or hinder the dispersion compared to the passive case. For
arbitrary activity levels, we numerically solve the GTD equations and validate the results
with Brownian dynamics simulations. We show that the dispersion coefficient could
vary non-monotonically with both the flow speed and particle activity. Furthermore, the
dispersion coefficient shows an oscillatory behavior as a function of the flow oscillation
frequency, exhibiting distinct minima and maxima at different frequencies. The observed
oscillatory dispersion results from the interplay between self-propulsion and oscillatory
flow advection—a coupling absent in passive or steady systems. Our results show that
time-dependent flows can be used to tune the dispersion of active particles in confinement.
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1. Introduction

For micron-sized particles, the presence of fluid flow can enhance mass transport due to
the interplay between advection and diffusion. A classical example of this coupling effect
is Taylor dispersion, where Brownian solutes in pressure-driven flows exhibit enhanced
longitudinal dispersion compared to the molecular diffusivity (Taylor 1953, 1954a,b; Aris
1956). Since the work of Taylor (1953), a generalized Taylor dispersion (GTD) framework
has been developed to study a variety of transport phenomena. These include complex
geometries, spatial and temporal periodicity, and active (i.e., self-propelled) particle
dynamics (Brenner 1980; Shapiro & Brenner 1990; Hill & Bees 2002; Zia & Brady 2010;
Alonso-Matilla et al. 2019; Peng & Brady 2020; Peng 2024).
Active particles differ from passive solutes in that each unit is capable of self-propulsion

(Schweitzer et al. 1998; Romanczuk et al. 2012). The interplay between self-propulsion
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and fluid flow gives rise to rich and often non-intuitive dynamics that are absent in
passive Brownian systems (Romanczuk et al. 2012; Bechinger et al. 2016; Gomez-Solano
et al. 2016; Plan et al. 2020; Jing et al. 2020; Chandragiri et al. 2020; Chakraborty
et al. 2022; Choudhary et al. 2022). One example where these dynamics play a crucial
role is the transport behavior of microswimmers, which is important for understanding
both natural and engineered systems, such as infection by motile bacteria (Siitonen &
Nurminen 1992; Lane et al. 2005), formation of biofilms (Kim et al. 2014; Rusconi et al.
2010), drug delivery (Park et al. 2017; Lin et al. 2021; Dı́ez et al. 2021; Sridhar et al.
2022), therapeutic treatments (Ghosh et al. 2020) and environmental remediation (Soler
et al. 2013; Urso et al. 2023).
Transport of active particles often occur in confined geometries, where Poiseuille flow is

a common flow profile, and considerable work has focused on how active matter behaves
in such environments (Zöttl & Stark 2012, 2013; Apaza & Sandoval 2016; Junot et al.
2019; Mathijssen et al. 2019; Chuphal et al. 2021; Anand & Singh 2021; Khatri & Burada
2022; Choudhary et al. 2022; Walker et al. 2022; Ganesh et al. 2023; Valani et al. 2024).
For instance, in channels, active particles exhibit upstream swimming in Poiseuille flow
(Kaya & Koser 2012; Kantsler et al. 2014; Ezhilan & Saintillan 2015; Omori & Ishikawa
2016). Owing to their upstream motility, E. coli introduced downstream causes upstream
contamination in initially clean microfluidic channels (Figueroa-Morales et al. 2020).
Further investigations by Mathijssen et al. (2019) on bacterial motion near channel
surfaces revealed that E. coli engages in distinct rheotaxis regimes depending on the
shear rate. With increasing shear, the bacteria transition from upstream swimming to
oscillatory rheotaxis, and ultimately to a coexistence of rheotaxis aligned with both
positive and negative vorticity directions.
While these studies were primarily focused on steady flows, biologically relevant

systems are often governed by time-dependent flow conditions. McDonald (1955) exper-
imentally studied the relationship between pulsatile pressure and blood flow in arteries,
analyzing the phasic variations in arterial flow during each cardiac cycle. Inspired by the
study of McDonald (1955), Womersley (1955) investigated the velocity, rate of flow, and
viscous drag in arteries by considering a time-periodic pressure gradient. The primary
factors governing such flows include the pulsatile pressure generated by the heart, the
structural and mechanical properties of the vascular walls, and the flow behavior of blood
(Secomb 2016).
Early studies on longitudinal dispersion of passive contaminants in oscillatory pressure-

driven flows were carried out by Chatwin (1975, 1977). Later, Watson (1983) derived
analytical solutions for the long-time effective dispersivity in oscillatory flows within
both pipes and rectangular channels. His results showed that the effective dispersivity
decreases monotonically with increasing flow frequency. Subsequently, Mazumder &
Das (1992) investigated how boundary absorption and heterogeneous reactions influ-
ence contaminant dispersion in both steady and oscillatory flows. The significance of
such boundary interactions lies in their relevance to processes such as deposition and
transport across semi-permeable membranes. More recently, Chu et al. (2019) developed
a macro-transport theory for two-dimensional flows in a parallel plate channel with
alternating shear-free and no-slip regions. They considered both steady and oscillatory
flow components to study the transport coefficients of passive particles. Later, they
extended their analysis to eccentric annuli (Chu et al. 2020) where they showed that
the maximum dispersion observed in a time-oscillatory flow can be achieved by applying
a slowly oscillating flow in an annulus with large eccentricity. Hettiarachchi et al. (2011)
used experiments and simulations to show that pulsatile cerebrospinal fluid significantly
enhances drug dispersion in the spinal cord relative to no flow.
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Although the dispersion of passive particles in oscillatory flows has been widely studied,
much less is known about the transport of microswimmers in oscillatory flows. Recently,
using experiments and simulations, Caldag & Bees (2025) showed that oscillatory flow
can lead to nontrivial dispersion dynamics in gyrotactic swimmers. In this paper, we
consider the dispersion of active Brownian particles (ABPs) in time-periodic pressure-
driven Poiseuille flow through planar channels. We apply the GTD theory of Peng
& Brady (2020), originally developed for ABPs in steady flow, to characterize the
long-time longitudinal dispersion of ABPs in oscillatory flow. Due to the time-periodic
nature of the flow, an additional time average over one oscillation period is performed
to define the time-averaged dispersion coefficient (Chatwin 1975, 1977; Watson 1983).
In the weak-swimming limit, characterized by a small swim Péclet number (Pes ≪
1), we show that the first effect of swimming on longitudinal dispersion appears at
O(Pe2s). Depending on the flow Péclet number (Pe) and oscillation frequency, the O(Pe2s)
contribution can be either positive or negative. As such, activity can either enhance or
hinder longitudinal dispersion in oscillatory Poiseuille flow compared to passive Brownian
particles. For arbitrary swim speeds, numerical solutions of the governing equations are
used to characterize the dispersion as a function of the flow speed, swim speed, and
oscillation frequency. Numerical results are validated against Brownian dynamics (BD)
simulations.

2. Problem formulation

2.1. The Smoluchowski equation

We consider the long-time transport behavior of ABPs dispersed in a viscous Newto-
nian solvent confined between two parallel plates with a separation distance of 2H. In
the dilute limit, we only consider the dynamics of a single ABP. The ABP is assumed to
be spherical, and its radius is much smaller than the width of the channel. This allows
us to treat the ABP as a ‘point’ particle. An ABP self-propels with a constant swim
speed Us in a body-fixed swimming direction q (q · q = 1). Due to rotational Brownian
motion, the orientation vector q undergoes stochastic reorientation. The configuration of
an ABP at time t is described by its position vector x and by the orientation vector q.
We define P (x, q, t) as the probability density function of finding the ABP at position x
with orientation q at time t. It satisfies the Smoluchowski equation,

∂P

∂t
+∇ · jT +∇R · jR = 0, (2.1)

where ∇ = ∂/∂x and ∇R = q × ∂/∂q are the spatial and rotational gradient operators,
respectively. In equation (2.1),

jT = UsqP + ufP −DT∇P, (2.2)

jR = ΩfP −DR∇RP, (2.3)

where uf is the background fluid velocity field, DT is the translational diffusivity of the
ABP, and Ωf = 1

2∇×uf is the flow-induced angular velocity. At the channel walls, the
no-flux boundary condition is satisfied (Ezhilan & Saintillan 2015; Peng & Brady 2020):

ey · jT = 0, y = ±H, (2.4)

where ey is the unit normal to the channel walls. The longitudinal Cartesian coordinate
is x and y is the transverse coordinate.
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2.2. Oscillatory Poiseuille flow

For ease of reference, we provide a brief outline of the flow field derivation. We consider
a one-dimensional flow, uf = u(y, t)ex, driven by a prescribed oscillatory pressure
gradient along the channel (Womersley 1955). Here ex is the unit basis vector in the
longitudinal direction. The Navier-Stokes equations reduce to

ρ
∂u

∂t
= −∂p

∂x
+ µ

∂2u

∂y2
, (2.5)

where ρ is the density of the fluid, µ is the dynamic viscosity of the fluid, and the
prescribed pressure gradient is given by

−∂p

∂x
=

P0

H
cos(ωt). (2.6)

In equation (2.6), P0 is a reference pressure and ω is the angular frequency of the
actuation. One can show that the solution of equation (2.5) may be written as u(y, t) =
Re

[
u′(y)eiωt

]
, where

u′(y) =
iP0

ρHω
[−1 + cosh ((1 + i)λy) sech ((1 + i)λH)] . (2.7)

In equation (2.7), i =
√
−1 is the imaginary unit, ν = µ/ρ is the kinematic viscosity

of the fluid, and λ =
√
ω/(2ν). The viscous length, 1/λ =

√
2ν/ω, sets the scale over

which the fluid momentum diffuses during one oscillation cycle of the applied pressure.
The operator Re extracts the real part of a complex quantity.
In the zero-frequency limit, ω → 0, we recover the steady Poiseuille flow as

u(y, t) → P0H

2µ

(
1− y2

H2

)
. (2.8)

For convenience, we define the characteristic flow speed Uf = P0H/(2µ). Using this, we
rewrite equation (2.7) as

u′(y) =
iUf

(λH)2
[−1 + cosh ((1 + i)λy) sech ((1 + i)λH)] , (2.9)

The angular velocity Ωf (y, t) = Re
[
Ω′eiωt

]
, where

Ω′ = −1

2

∂u′

∂y
=

(1− i)Uf

2λH2
sinh ((1 + i)λy) sech ((1 + i)λH) . (2.10)

2.3. Generalized Taylor dispersion theory

Taking the zeroth orientational moment of equation (2.1) gives the governing equation
for the number density,

∂n

∂t
+∇ · (ufn+ Usm−DT∇n) = 0, (2.11)

where n =
∫
S Pdq is the number density, and m =

∫
S qPdq is the first moment, or polar

order. Here S = {q | q · q = 1} denotes the unit sphere of orientations. Since the channel
is unbounded in the x direction, it is convenient to work in Fourier space. To derive a
long-time effective transport equation, we first define the Fourier transform of a function
f(x) as f̂(k) =

∫
e−ikxf(x)dx, where k is the wavenumber. Following Peng & Brady

(2020), one can show that

∂n

∂t
+ k2DTn+ ik

(
u(y, t)n̂+ Usm̂x

)
= 0, (2.12)
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where we have made use of the no-flux condition, and an overhead bar denotes the
cross-sectional average,

n(k, t) =
1

2H

∫ H

−H

n̂(k, y, t)dy. (2.13)

In equation (2.12), m̂x = ex · m̂ is the polar order in the x direction in Fourier space.
Introducing the non-dimensional density or structure function Ĝ such that

P̂ (k, y, q, t) = n(k, t)Ĝ(k, y, q, t) and the small wavenumber expansion Ĝ = g(y, q, t) +
ik b(y, q, t) +O(k2), we obtain

∂n

∂t
+ ikU effn+ k2Deffn+O(k3) = 0, (2.14)

where the effective drift and the effective longitudinal dispersivity are given by, respec-
tively,

U eff = U eff(t) = Usm0
x + un0, (2.15)

Deff = Deff(t) = DT − Usm̃x − uñ. (2.16)

In the small-wavenumber expansion, g is the average field and b is the displacement
(or fluctuating) field. Note that b has units of length, e.g., displacement. We emphasize
that terms of order k3 and higher do not contribute to either the drift or the dispersion
coefficient. The orientational moments in (2.15) are given by

n0 =

∫
S
gdq, and m0 =

∫
S
qgdq. (2.17)

Similarly, in (2.16), we have

ñ =

∫
S
bdq, and m̃ =

∫
S
qbdq. (2.18)

Different from the constant transport coefficients in Peng & Brady (2020), the long-time
transport coefficients in (2.15) and (2.16) are time-dependent due to the oscillatory flow.
The governing equations and boundary conditions for g and b are derived in Peng &

Brady (2020). For the average field, we have

∂g

∂t
+

∂

∂y

(
Usqyg −DT

∂g

∂y

)
+∇R · (Ωfg −DR∇Rg) = 0, (2.19)

and

Usqyg −DT
∂g

∂y
= 0, y = ±H. (2.20)

The displacement field is governed by

∂b

∂t
+

∂

∂y

(
Usqyb−DT

∂b

∂y

)
+∇R · (Ωfb−DR∇Rb) =

(
U eff − u− Usqx

)
g, (2.21)

Usqyb−DT
∂b

∂y
= 0, y = ±H. (2.22)

Noting that

1

2H

∫ H

−H

dy

∫
S
Ĝdq = 1, (2.23)

we have

1

2H

∫ H

−H

dy

∫
S
gdq = 1, and

1

2H

∫ H

−H

dy

∫
S
bdq = 0. (2.24)
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2.4. Non-dimensionalization

We scale lengths with the channel half-width H and the time with the reorientation
time τR. The system is governed by five non-dimensional parameters:

Pe =
UfτR
H

, Pes =
UsτR
H

=
ℓ

H
, γ =

√
DT τR
H

=
δ

H
, (2.25a)

χ = ω τR, κ = λH =
√
ω/(2ν)H. (2.25b)

where Pe is the flow Péclet number that compares the reorientation time τR with the flow
timescale H/Uf , Pes is the swim Péclet number that compares the reorientation time
with the swim timescale H/Us, γ is a non-dimensional measure of the microscopic length
δ =

√
DT τR, χ is the non-dimensional flow frequency, and κ compares the length scale

1/λ with the channel half-width H. The microscopic length δ characterizes the distance
a particle travels by translational diffusion over the timescale defined by τR. The swim
Péclet number can be viewed as a comparison between the persistence length, ℓ = UsτR,
and the channel half-width. Since both χ and κ contains ω, it is useful to introduce the
non-dimensional parameter

α =
χ

κ2
=

2ντR
H

, (2.26)

when analyzing the effect of flow frequency ω on dispersion behavior. With this, varying
the dimensional frequency ω corresponds to changing χ while keeping α constant.
The non-dimensional form of equation (2.19) is

∂g

∂t∗
+

∂

∂y∗

(
Pesqyg − γ2 ∂g

∂y∗

)
+

∂

∂ϕ

(
Ω∗

fg −
∂g

∂ϕ

)
= 0, (2.27)

where we have used the parametrization q = cosϕex + sinϕ ey with ϕ ∈ [0, 2π) being
the orientation angle, y∗ ∈ [−1, 1], and we have used the superscript ‘∗’ to denote
dimensionless quantities. That is, t∗ = t/τR, y

∗ = y/H, and Ω∗
f = ΩfτR = Re

[
Ω′∗eiχt

∗]
,

where

Ω′∗ = Ω′τR =
(1− i)Pe

2κ
sinh ((1 + i)κy∗) sech ((1 + i)κ) . (2.28)

The superscript on g is suppressed since g is non-dimensional. With the solution of g, we
can obtain the non-dimensional drift via

U eff∗(t∗) = U effτR/H = Pesm0
x + u∗n0. (2.29)

Similarly, we may write the non-dimensional form of equation (2.21) as

∂b∗

∂t∗
+

∂

∂y∗

(
Pesqyb

∗ − γ2 ∂b
∗

∂y∗

)
+

∂

∂ϕ

(
Ω∗

fb
∗ − ∂b∗

∂ϕ

)
=

(
U eff∗ − u∗ − Pesqx

)
g, (2.30)

where b∗ = b/H, and u∗ = uτR/H = Re[u′∗eiχt
∗
]. The complex flow amplitude is given

by

u′∗ =
iPe

κ2
[−1 + cosh ((1 + i)κy∗) sech ((1 + i)κ)] . (2.31)

To characterize the dispersion of active particles in an oscillatory Poiseuille flow,
we compare the effective dispersion coefficient with the translational diffusivity. Using
equation (2.16), we have

Deff∗ =
Deff

DT
= 1− Pes

γ2
m̃∗

x − 1

γ2
u∗ñ∗. (2.32)

If Pe = 0, or Uf = 0, the problem reduces to that of diffusion of ABPs in a flat channel
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Figure 1. (a) Plots of the non-dimensional time-averaged effective dispersivity (⟨Deff
0 ⟩/DT ) as

a function of χ. (b) Contour plot of the logarithm of ⟨Deff
0 ⟩/DT as a function of Pe and χ. For

all results shown, α = 100, and γ2 = 0.1.

without flow. In this case, we have Deff = Deff
nf = DT +Dswim, where Dswim = U2

s τR/2
in 2D (Berg 1993), and Deff

nf is the effective dispersivity without flow. In non-dimensional
form, we have

Deff
nf

DT
= 1 +

Pe2s
2γ2

. (2.33)

For an oscillatory Poiseuille flow, Deff after the initial transients becomes a periodic
function of time. At long times, we define the time-averaged effective dispersion coefficient
as

⟨Deff∗⟩ = lim
t′→∞

1

T

∫ t′+T

t′
Deff∗(t∗)dt∗, (2.34)

where T = 2π/χ is the period of the flow oscillation. Similarly, one can define the time-
averaged effective drift as ⟨U eff∗⟩.

3. Weak-swimming asymptotic analysis

In the weak-swimming limit, characterized by Pes ≪ 1, we pose regular expansions
for the fields and transport coefficients:

g = g0 + Pes g1 + Pe2s g2 + · · · , (3.1)

b∗ = b∗0 + Pes b
∗
1 + Pe2s b

∗
2 + · · · , (3.2)

U eff∗ = U eff∗
0 + Pes U

eff∗
1 + Pe2s U

eff∗
2 + · · · , (3.3)

Deff∗ = Deff∗
0 + Pes D

eff∗
1 + Pe2s D

eff∗
2 + · · · . (3.4)

3.1. Passive Brownian particles

At O(1), the particle is passive and the average field is given by g0 ≡ 1/(2π). This
means that the number density across the channel is uniform. As a result, the effective
drift at O(1) is given by U eff∗

0 = u∗, which vanishes upon time-averaging.
The displacement field at O(1) admits a solution of the form b∗0 = Re[A′

0(y
∗)eiχt

∗
/(2π)],

where the solution to A′
0 is provided in appendix A. The instantaneous effective dispersion

coefficient at O(1) after initial transients is given by

Deff∗
0 (t∗) = 1− 1

2γ2

∫ 1

−1

u∗ Re
[
A′

0e
iχt∗

]
dy∗. (3.5)
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An analytical expression for the effective dispersion coefficient was derived by Watson
(1983), given by

⟨Deff∗
0 ⟩ = 1 +

Pe2

κ2

cosh (2κ)− cos (2κ)

cosh (2κ) + cos (2κ)

ι(2κ)− ι(
√
2χ/γ)

χ2 − 4γ4κ4
, (3.6)

where

ι(a) =
sinh (a)− sin (a)

a (cosh (a)− cos (a))
. (3.7)

In figure 1, we plot the passive dispersivity (
〈
Deff

0

〉
/DT ), given in (3.6), as a function

of χ and Pe. Since α is held fixed, increasing χ corresponds to increasing the dimensional
frequency. In the low frequency limit, we have

〈
Deff

0

〉
/DT → 1+4Pe2/(945γ4) as χ → 0.

For a steady Poiseuille flow of the same amplitude, the long-time dispersion coefficient
Deff

0 /DT = 1 + 8Pe2/(945γ4). As is well known, in oscillatory flow, (
〈
Deff

0

〉
−DT )/DT

approaches half of its steady value as χ → 0 (Aris 1960; Bowden 1965; Van den Broeck
1982; Watson 1983; Ng 2006; Chu et al. 2019, 2020). On the other hand, as χ → ∞,〈
Deff

0

〉
/DT → 1 regardless of Pe [see figure 1(a)]. In this high-frequency limit, shear-

induced dispersion vanishes due to the rapid flow oscillations. For low and intermediate
frequencies,

〈
Deff

0

〉
increases with Pe, as is consistent with Taylor dispersion. Overall,〈

Deff
0

〉
decreases monotonically with increasing frequency until it reaches the high-

frequency limit. In figure 1(b), we plot the same analytical expression given in equation
(3.6) in a contour plot as a function of both χ and Pe.

3.2. First order

At O(Pes), the average field is governed by

∂g1
∂t∗

+
∂

∂y∗

(
−γ2 ∂g1

∂y∗

)
+

∂

∂ϕ

(
Ω∗

fg1 −
∂g1
∂ϕ

)
= −qy

∂g0
∂y∗

, (3.8a)

γ2 ∂g1
∂y∗

= qyg0, at y∗ = ±1, (3.8b)∫ 1

−1

dy∗
∫
S
g1dq = 0. (3.8c)

Assuming a solution of the form g1 = A1(y
∗, t∗) cosϕ+B1(y

∗, t∗) sinϕ, we obtain

∂A1

∂t∗
− γ2 ∂

2A1

∂y∗2
+Ω∗

fB1 +A1 = 0, (3.9a)

∂B1

∂t∗
− γ2 ∂

2B1

∂y∗2
−Ω∗

fA1 +B1 = 0, (3.9b)

∂A1

∂y∗
= 0, and

∂B1

∂y∗
=

1

2πγ2
, at y∗ = ±1. (3.9c)

The instantaneous effective drift at this order U eff∗
1 vanishes.

The displacement filed at O(Pes) is governed by

∂b∗1
∂t∗

+
∂

∂y∗

(
−γ2 ∂b

∗
1

∂y∗

)
+

∂

∂ϕ

(
Ω∗

fb
∗
1 −

∂b∗1
∂ϕ

)
= −qy

∂b∗0
∂y∗

+
(
U eff∗
0 − u∗) g1

+
(
U eff∗
1 − qx

)
g0, (3.10a)

γ2 ∂b
∗
1

∂y∗
= qyb

∗
0, at y∗ = ±1, (3.10b)
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−1

dy∗
∫
S
b∗1dq = 0, (3.10c)

which admits a solution of the form b∗1 = A2(y
∗, t∗) cosϕ+B2(y

∗, t∗) sinϕ. Inserting this
form into equation (3.10), we obtain

∂A2

∂t∗
− γ2 ∂

2A2

∂y∗2
+Ω∗

fB2 +A2 =
(
U eff∗
0 − u∗)A1 − g0, (3.11a)

∂B2

∂t∗
− γ2 ∂

2B2

∂y∗2
−Ω∗

fA2 +B2 = − ∂b∗0
∂y∗

+
(
U eff∗
0 − u∗)B1, (3.11b)

∂A2

∂y∗
= 0, and

∂B2

∂y∗
=

b∗0
γ2

, at y∗ = ±1. (3.11c)

The effective longitudinal dispersivity at O(Pes) vanishes,

Deff∗
1 = − 1

2γ2

∫ 1

−1

dy∗
∫
S
(u∗b∗1 + qxb

∗
0)dq = 0. (3.12)

3.3. Second order

At O(Pe2s), the average field is governed by

∂g2
∂t∗

+
∂

∂y∗

(
qyg1 − γ2 ∂g2

∂y∗

)
+

∂

∂ϕ

(
Ω∗

fg2 −
∂g2
∂ϕ

)
= 0, (3.13a)

γ2 ∂g2
∂y∗

= qyg1 at y∗ = ±1, (3.13b)∫ 1

−1

dy∗
∫
S
g2dq = 0. (3.13c)

We propose a solution of the form,

g2 = K1(y
∗, t∗) + C1(y

∗, t∗) cos 2ϕ+D1(y
∗, t∗) sin 2ϕ. (3.14)

The displacement filed at O(Pe2s) is governed by

∂b∗2
∂t∗

+
∂

∂y∗

(
qyb

∗
1 − γ2 ∂b

∗
2

∂y∗

)
+

∂

∂ϕ

(
Ω∗

fb
∗
2 −

∂b∗2
∂ϕ

)
=

(
U eff*
0 − u∗

)
g2 +

(
U eff*
1 − qx

)
g1 + U eff*

2 g0, (3.15a)

γ2 ∂b
∗
2

∂y∗
= qyb

∗
1 at y∗ = ±1, (3.15b)∫ 1

−1

dy∗
∫
S
b∗2dq = 0. (3.15c)

We assume a solution for b∗2,

b∗2 = K2(y
∗, t∗) + C2(y

∗, t∗) cos 2ϕ+D2(y
∗, t∗) sin 2ϕ. (3.16)

One can show that ⟨U eff∗
2 ⟩ = 0, and

Deff∗
2 = − 1

2γ2

∫ 1

−1

dy∗
∫
S
(u∗b∗2 + qxb

∗
1)dq = − π

2γ2

∫ 1

−1

(2u∗K2 +A2) dy
∗. (3.17)

To obtain Deff∗
2 , one needs to solve for K2. The relevant equations are given by
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Figure 2. The O(Pe2s) dispersivity as a function of χ. For all results, α = 100, and γ2 = 0.1.
Circles denote results obtained from the numerical solutions of the full GTD theory for
Pes = 0.1. Diamonds denote results from the asymptotic analysis.

∂K1

∂t∗
− γ2 ∂

2K1

∂y∗2
+

1

2

∂B1

∂y∗
= 0, (3.18a)

∂K2

∂t∗
+

[
1

2

∂B2

∂y∗
− γ2 ∂

2K2

∂y∗2

]
= U eff∗

2 g0 −
1

2
A1 +

(
U eff∗
0 − u∗)K1, (3.18b)

∂K1

∂y∗
=

1

2γ2
B1, and

∂K2

∂y∗
=

1

2γ2
B2 at y∗ = ±1. (3.18c)

We solve equations (3.9), (3.11) and (3.18) using a Chebyshev collocation method. For
time evolution, we use the Crank-Nicolson method. At long times, the time-averaged
dispersion coefficient, ⟨Deff∗

2 ⟩, is obtained via numerical integration over one oscillation
period. We also solve the full GTD theory by solving equations (2.27) and (2.30)
numerically (see appendix D). To extract an approximation ofDeff∗

2 from the full solution,
denoted as D̃eff∗

2 , we use the relation ⟨D̃eff∗
2 ⟩ =

(
⟨Deff∗⟩ − ⟨Deff∗

0 ⟩
)
/Pe2s. Here, ⟨Deff∗

0 ⟩ is
the analytical solution for passive particles from equation (3.6), and the full simulation
is performed with Pes = 0.1.
In figure 2, we plot ⟨Deff∗

2 ⟩ as a function of χ. The asymptotic results (diamonds) are
compared with numerical solutions (circles) of the full GTD theory (see appendix D).
As in the passive case (see figure 1), the shear-induced dispersion vanishes in the high-
frequency limit. From (2.33), we have ⟨Deff∗

2 ⟩ → 1/(2γ2) as χ → ∞. Indeed, figure 2
shows that 2γ2 ⟨Deff∗

2 ⟩ approaches unity in the high-frequency limit.
Overall, ⟨Deff∗

2 ⟩ can be either positive or negative depending on Pe and χ. This
means that activity can either enhance or hinder the longitudinal dispersion in an
oscillatory flow compared to the passive case. In particular, a reduction in the dispersion
(⟨Deff∗

2 ⟩ < 0) occurs in the low-frequency regime when Pe is sufficiently large (e.g.,
Pe = 5; blue markers). This reduction can be attributed to shear-reduced swim diffusion
(Peng & Brady 2020), which becomes prominent for sufficiently strong shear. For Pe =
1, ⟨Deff∗

2 ⟩ > 0 for all values of χ. For Pe = 5, ⟨Deff∗
2 ⟩ can be either positive or

negative depending on χ. There exists an optimal frequency at which the enhancement
in dispersion is maximized.
In figure 3, we compare ⟨Deff⟩/DT from the two-term asymptotic solution (solid lines),

⟨Deff∗
0 ⟩ + Pe2s⟨Deff∗

2 ⟩, with the numerical solutions (circles) of the full GTD theory. In
figure 3(a), for Pe = 1, the two-term asymptotic solution (solid line) agrees with the
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Figure 3. Plots of ⟨Deff⟩/DT as a function of Pes for (a) Pe = 1, and (b) Pe = 10. The
solid lines denote the two-term asymptotic solution, ⟨Deff∗

0 ⟩+Pe2s⟨Deff∗
2 ⟩. Circles are numerical

solutions of the full GTD theory. For all results shown, χ = 1, γ2 = 0.1, and κ = 0.1.
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Figure 4. (a) Plots of ⟨Deff⟩/DT as a function of Pe for several values of Pes. (b) Plots of
⟨Deff⟩/Deff

nf as a function of Pe for several values of Pes. Circles represent solutions of the full
GTD theory, and triangles denote results from BD simulations. The dashed line represents the
passive (Pes = 0) results. For all results, χ = 1, γ2 = 0.1, and κ = 0.1.

full GTD theory (circles) well beyond its formal regime of validity, i.e., Pes ≪ 1. In
figure 3(b), for a stronger flow (Pe = 10), the full GTD results (circles) show that
⟨Deff⟩/DT varies non-monotonically with increasing Pes. As Pes increases beyond the
weak-swimming regime, the effective dispersivity decreases due to shear-reduced swim
diffusion. The effective dispersivity increases again when activity (Pes) is sufficiently
high. This behavior is not captured by the asymptotic solution (solid line), which is valid
only in the weak-swimming limit.

4. Dispersivity in the finite activity regime

To characterize the general behavior of the effective dispersion coefficient, we resort
to numerical solutions of the full GTD theory (see appendix D). The GTD equations
are evolved over time. Numerical solutions of the GTD theory are compared to results
obtained from BD simulations (see appendix C).
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Figure 5. Plots of the two contributions to ⟨Deff⟩/DT , ⟨−Usm̃x⟩/DT and ⟨−uñ⟩/DT as a
function of Pe for Pes = 5. Blue triangles represent ⟨−Usm̃x⟩/DT , and red circles represent
⟨−uñ⟩/DT . All results are obtained by solving the full GTD theory with χ = 1, γ2 = 0.1, and
κ = 0.1.

4.1. Competition between flow advection and particle activity

In this section, we examine the dispersion behavior of ABPs for a given flow oscillation
frequency, χ = 1. With this fixed frequency, the dispersion is qualitatively similar to that
considered by Peng & Brady (2020) for a steady Poiseuille flow. In figure 4(a), we plot
⟨Deff⟩/DT as a function of Pe for different values of Pes. As Pe → 0, we recover the
dispersion coefficient in the absence of flow, Deff

nf . Since Deff
nf /DT = 1 + Pe2s/(2γ

2), the
low-Pe plateau in the dispersion coefficient increases with activity (Pes). On the other
hand, as Pe → ∞, the flow speed dominates over the swim speed. In this regime, the
effective dispersion coefficient converges to the passive result (dashed line), regardless of
activity. For higher activity (e.g., Pes = 5; blue markers), a large flow amplitude (Pe)
is required for the dispersion coefficient to approach the passive result. For Pes = 0.1
(purple markers) and Pes = 1 (red markers), the swimming effects are largely dominated
by the Taylor dispersion component. When activity is sufficiently high (e.g., Pes = 5;
blue markers), the dispersion coefficient varies non-monotonically with increasing flow
amplitude. The reduction in

〈
Deff

〉
for intermediate flow amplitudes are due to the shear-

reduced swim diffusion (see also § 3.3).
In figure 4(b), we replot the data shown in figure 4(a) using a different scaling—

⟨Deff⟩/Deff
nf instead of ⟨Deff⟩/DT . By scaling the effective dispersion with the no-flow

dispersion coefficient, all curves collapse in the low-Pe limit. Conversely, the rescaled
dispersion coefficient approaches different values in the large-Pe limit.
To visualize the non-monotonic behavior of ⟨Deff⟩/DT , we plot its two contributions,

⟨−Usm̃x⟩/DT and ⟨−uñ⟩/DT as functions of Pe in figure 5. In the intermediate Pe
regime, ⟨−Usm̃x⟩/DT decreases with increasing Pe and even becomes negative at high
Pe. In contrast, ⟨−uñ⟩/DT increases with Pe. For sufficiently large Pe, the Taylor
component dominates over the swim contribution. The competition between these two
contributions gives rise to the observed non-monotonicity in the effective dispersivity,
as shown in figure 4. We emphasize that these two contributions are not independent;
therefore, each individual term should not be interpreted as a dispersion coefficient.

4.2. Effect of oscillation frequency

We now consider the effect of flow oscillation frequency on the effective longitudinal
dispersion. In figure 6, we plot ⟨Deff⟩/Deff

nf as a function of χ for different values of Pe
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Figure 6. Plots of ⟨Deff⟩/Deff
nf versus χ for different values of Pes, shown for (a) Pe = 10, and

(b) Pe = 40. For all results shown, α = 100, and γ2 = 0.1. Circles denote results obtained from
numerical solutions of the full GTD theory, and triangles represent results from BD simulations.
The dashed line represents the passive (Pes = 0) results.

and Pes. Circles denote numerical solutions of the GTD theory, while triangles represent
results from BD simulations. The dashed line corresponds to the passive case (i.e., Pes =
0), as determined by Watson (1983). Figures 6(a) and 6(b) correspond to Pe = 10 and
Pe = 40, respectively. To isolate the effect of the oscillation frequency, we fix α in this
section. With α fixed, we note that κ depends explicitly on χ (i.e., κ2 = χ/α).
In the high-frequency limit, one can show that the flow vanishes at leading order

(see appendix B for the asymptotic analysis). Effectively, the high-frequency limit is
equivalent to the no-flow case. Therefore,

〈
Deff

〉
→ Deff

nf as χ → ∞, regardless of Pes
or Pe. As shown in figure 6, ⟨Deff⟩/Deff

nf approaches unity in the high-frequency regime.
Compared to the cases shown in figure 6(a), a higher value of χ is required to reach the
high-frequency limit in figure 6(b), due to the larger flow amplitude (Pe) in the latter.
We note that Deff

nf depends explicitly on Pes. In the low-frequency regime, ⟨Deff⟩/Deff
nf is

lower for higher Pes because Deff
nf increases quadratically with the swim speed, whereas

⟨Deff⟩ does not increase as rapidly [see figure 4(a)].
As shown in figure 6, the scaled dispersion coefficient

〈
Deff

〉
/Deff

nf for passive particles
decreases monotonically with χ. For active particles, the scaled dispersion coefficient ex-
hibits rich behavior that depends on the flow (Pe) and swim (Pes) speeds. At low activity
[e.g., Pes = 1 in figure 6(a)], the scaled dispersion coefficient remains a monotonically
decreasing function of χ. For higher activity [e.g., Pes = 5 in figure 6(a)], the scaled
dispersion coefficient begins at a low plateau and increases as a function of χ, eventually
converging to the common high-frequency limit.
Interestingly, in figure 6(b), the scaled dispersion coefficient exhibits oscillatory behav-

ior as a function of χ for Pes = 5. This non-trivial variation occurs when the flow Péclet
number is sufficiently large. For Pes = 5 and Pe = 40, we see that

〈
Deff

〉
/Deff

nf exhibits
both a minimum and a maximum at different frequencies. The observed oscillatory
behavior likely results from resonance in which the flow oscillation timescale matches
an intrinsic timescale of the ABPs. Because the dynamics of ABPs involve multiple
timescales, the intrinsic timescale that leads to resonant diffusion cannot be easily
obtained. In the following, we investigate this phenomenon numerically by identifying
the thresholds of this oscillation as a function of χ, Pe, and Pes. Physically, χ, Pe, and
Pes characterize the flow oscillation timescale 1/ω, the flow advection timescale H/Uf ,
and the swimming timescale H/Us, respectively.
We first examine the details of the oscillation in figure 7(a) by plotting ⟨Deff⟩/Deff

nf



14 V. Chakraborty, P. Mishra, M. Qiu and Z. Peng

100 101 102 103

χ = ωτR

10−2

10−1

100

101
〈D

e
ff
〉/
D

e
ff

n
f

Pes = 5

Pes = 10

α = 100

10−1 100 101 102

χ = ωτR

10−1

100

101

102

P
e
=

U
f
τ R

/
H

−0.8

−0.4

0.0

0.4

0.8

1.2

lo
g
1
0

( 〈D
e
ff
〉/
D

e
ff

n
f

)

(a) Pe = 40 (b) Pes = 5

Figure 7. (a) Plots of ⟨Deff⟩/Deff
nf as a function of χ for different values of Pes. (b) Contour

plot of the logarithm of ⟨Deff⟩/Deff
nf as a function of Pe and χ at Pes = 5. All results are from

BD simulations with α = 100, and γ2 = 0.1. The contour plot is produced from a total of 400
data points, with 20 points uniformly spaced in logarithmic space along each axis.

as a function of χ for two values of Pes, using more data points than in figure 6. Even
though it is not straightforward to determine the intrinsic timescale associated with
resonant diffusion, one can rationalize its variation as a function of the swim speed.
Compared to Pes = 5 (blue circles), the onset of oscillatory behavior of ⟨Deff⟩/Deff

nf

and the locations of its extrema shift to higher flow frequencies for higher activity
(Pes = 10, black circles). This can be understood by considering the swim timescale,
τs = H/Us, which characterizes the time it takes for the ABPs to traverse the channel
in the transverse direction. As the swim speed (Pes) increases, τs decreases. Therefore,
a smaller flow oscillation timescale (or higher flow oscillation frequency) is required to
match the swim timescale.

Next, we consider how the oscillation in the dispersion coefficient further depends on
the flow advection. In figure 7(b), we show a contour plot of the logarithm of ⟨Deff⟩/Deff

nf

as a function of Pe and χ for Pes = 5. We observe that as Pe increases, the extrema in
⟨Deff⟩/Deff

nf shift to higher flow oscillation frequencies, reflected in the upward shift of the
light-colored region in figure 7(b) with increasing χ. In addition to the swim timescale
discussed in figure 7(a), the ABPs in the presence of flow also have a flow timescale
defined by H/Uf . As Pe increases, this flow timescale decreases. To achieve resonance,
the timescale defined by the flow oscillation, 1/ω, needs to be smaller. Due to the interplay
of these timescales, in general ⟨Deff⟩/Deff

nf exhibits non-monotonic behaviors as a function
of Pe and χ. Furthermore, we note that the region where the scaled dispersion coefficient
attains low values shrinks as Pe increases.

Together with the behavior of ⟨Deff⟩/Deff
nf shown in figure 7(a), we note that increasing

either Pe or Pes shifts the onset of oscillatory behavior to higher flow frequencies. This
suggests that resonance can occur when the flow oscillation timescale matches some
intrinsic timescale that results from the coupling between the swimming motion and the
oscillatory flow advection. Formally, we have τ = τ(Pes, P e), where τ is the timescale that
must match the flow oscillation timescale to achieve resonance. Extracting the functional
dependence of τ on H/Us and H/Uf is not pursued here. We note that resonant diffusion
is commonly observed in both passive and active particle systems (Castiglione et al. 1998;
Leahy et al. 2015; Khatri & Burada 2022; Chepizhko & Franosch 2022).
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Figure 8. (a) Plots of ⟨Deff⟩/DT as a function of Pe for different values of B. For all results
in (a), Pes = 5, χ = 1, γ2 = 0.1, and κ = 0.1. (b) Plots of ⟨Deff⟩/Deff

nf as a function of χ for
B = 0.2. (c) Plots of ⟨Deff⟩/Deff

nf as a function of χ for B = 0.8. For all results shown, circles
represent results from numerical solutions of the full GTD theory, while triangles denote results
from BD simulations. The labels shown in (b) also apply to the corresponding curves in (c). For
(b) and (c), Pe = 10, α = 100, and γ2 = 0.1.

4.3. Non-spherical particles

We now analyze how the effective dispersivity is influenced by the shape of the particle.
For an ellipsoidal particle, a shape factor is defined as B = (r2−1)/(r2+1), where r = a/b.
Here, a and b denote the lengths of the semi-major and semi-minor axes, respectively. For
a sphere, r = 1 andB = 0. For a thin rod, we haveB → 1 as r → ∞. Modeling the angular
dynamics using Jeffery equation (Jeffery 1922), we have Ωf = 1

2∇× uf +Bq × (E · q),
where Eij =

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
is the rate-of-strain tensor. In the oscillatory Poiseuille flow,

we have

Ω′∗ = Ω′τD =
(1− i)Pe

2κ
(1−B cos 2ϕ) sinh ((1 + i)κy∗) sech ((1 + i)κ) . (4.1)

As in the spherical case, we assume a constant translational diffusivity and enforce the
no-flux boundary condition (2.4).
In figure 8(a), we plot ⟨Deff⟩/DT as a function Pe for different values ofB. The vorticity

term (∇ × uf ) in the angular velocity induces spinning on ABPs, which reduces their
persistence and consequently their swim diffusion. For non-spherical particles (B ̸= 0),
the additional alignment term from the rate-of-strain tensor is present. Because of this
alignment, non-spherical particles lose less of their persistence. As a result, we observe
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that in figure 8(a), the minimum in the dispersion coefficient decreases as B decreases.
As shown in figures 8(b) and 8(c), the scaled dispersion coefficient ⟨Deff⟩/Deff

nf exhibits
qualitatively similar behavior to that of spherical particles. However, the suppression in
effective dispersivity is reduced, owing to the reduced spinning.

5. Concluding remarks

In this paper, we employed a GTD theory to study the longitudinal dispersion of
ABPs in oscillatory Poiseuille flow. For passive particles, the time-averaged dispersion
coefficient decreases monotonically with increasing flow oscillation frequency. As the
frequency increases, Taylor dispersion is gradually suppressed due to the increasing
oscillations of the flow. The long-time dispersion can be modeled as a random walk,
from which a diffusivity is defined as ℓ2eff/τeff , where ℓeff is the step length and τeff is the
de-correlation time. In the high-frequency limit, the step length ℓeff vanishes as a result
of the rapid back-and-forth motion induced by the flow. Therefore, Taylor dispersion
vanishes and ⟨Deff⟩ → Deff

nf = DT as χ → ∞. For active particles, we have shown that
the high-frequency behavior is indistinguishable from that of passive particles when the
scaled dispersion coefficient ⟨Deff⟩/Deff

nf is considered. We note that for active particles
Deff

nf = DT +Dswim > DT .

We have shown that the effective dispersion coefficient of active particles can exhibit
oscillatory behavior as a function of the flow frequency χ. When the external driving fre-
quency (i.e., flow oscillation frequency) matches an intrinsic frequency, resonant diffusion
can be observed. This distinct behavior of active particles results from the coupling be-
tween self-propulsion and oscillatory fluid advection. Without activity, resonant diffusion
does not occur. Likewise, for active particles in a steady Poiseuille flow, no oscillatory
dispersion arises due to the absence of a periodic driving force. In oscillatory Poiseuille
flow, the oscillation frequency acts as an external control parameter that modulates
particle dispersion. This modulation is particularly versatile for active particles, as flow
oscillations can either enhance or suppress dispersion compared to the no-flow case.

In general, resonant or oscillatory dynamics may occur when multiple transport mech-
anisms are present. For example, the rotational dispersion coefficient of axisymmetric
Brownian particles in oscillatory shear flows exhibits oscillatory behavior as a function of
the flow frequency (Leahy et al. 2015). In this case, the natural frequency corresponds to
the inverse of half a Jeffery orbit period, while the external frequency is the flow oscillation
frequency. Resonant diffusion has also been observed in particle systems, including the
diffusion of chiral particles in steady Poiseuille flow (Khatri & Burada 2022), gravitactic
circle swimmers (Chepizhko & Franosch 2022), and particles in complex time-periodic
flow fields with mean flow (Castiglione et al. 1998).

While the GTD theory applies to generic time-periodic flows, we have considered only
the case where the driving pressure gradient consists of a single harmonic. An interesting
extension would be to include a mean flow, in addition to the oscillatory component
that averages to zero. Particle transport due to the interaction between the steady and
oscillatory components of the flow may lead to qualitatively different dispersion behavior.
In particular, it would be interesting to examine how the oscillatory dispersion behavior is
modified. While our analysis focuses on flows in planar channels, the GTD theory can be
generalized to corrugated channels and periodic porous media (Peng 2024; Alonso-Matilla
et al. 2019). For example, it would be interesting to examine the transport behavior of
active particles in peristaltic flow (Chakrabarti & Saintillan 2020).
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Appendix A. The passive solution

The displacement field at O(1) is governed by

∂b∗0
∂t∗

+
∂

∂y∗

(
−γ2 ∂b

∗
0

∂y∗

)
+

∂

∂ϕ

(
Ω∗

fb
∗
0 −

∂b∗0
∂ϕ

)
=

(
U eff∗
0 − u∗) g0, (A 1a)

− ∂b∗0
∂y∗

= 0, at y∗ = ±1, (A 1b)∫ 1

−1

dy∗
∫
S
b∗0dq = 0, (A 1c)

which admits a solution of the form b∗0 = Re[A′
0(y

∗)eiχt
∗
/(2π)]. Here A′

0 satisfies

iχA′
0 − γ2 d

2A′
0

dy∗2
= u′∗ − u′∗, (A 2a)

−dA′
0

dy∗
= 0, at y∗ = ±1, (A 2b)∫ 1

−1

A′
0dy

∗ = 0. (A 2c)

One can show that the solution is given by

A′
0(y

∗) = α0 + α1 cosh

(
(1 + i)

√
χ√
2γ

y∗
)
+ α2 cosh ((1 + i)κy∗), (A 3)

where

α0 =
Pe(1− i)

2κ3χ
tanh ((1 + i)κ ), (A 4a)

α1 = −
√
2Pe γ

χ1/2κ (2κ2γ2 − χ)

tanh ((1 + i)κ)

sinh(1 + i)
√
χ√
2γ

, (A 4b)

α2 =
Pe

κ2 (2κ2γ2 − χ)
sech ((1 + i)κ) . (A 4c)
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One interesting limit is κ → 0, where the viscous length scale,
√
2ν/ω, is much larger

than the channel half-width, H. As κ → 0, we have

α0 =
Pe

χκ2
+O(κ2), α2 = − Pe

χκ2
+O(κ2), (A 5a)

α1 =
(1 + i)

√
2Pe

χ3/2

1

sinh
(
(1 + i)

√
χ√
2γ

) +O(κ2), (A 5b)

cosh ((1 + i)κy∗) = 1 +O(κ2). (A 5c)

Therefore, the singular contributions from α0 and α2 cosh[(1+i)κy∗] in (A 3) are canceled
out while the second term in (A 3) is regular. Overall A′

0(y
∗) is finite as κ → 0,

A′
0(y

∗) =
Pe

3χ2

(
−6γ2 + i

(
1− 3y∗2

)
χ
)

+

√
2Pe γ (1 + i)

χ3/2

cosh
(
(1 + i)

√
χ√
2γ
y∗
)

sinh
(
(1 + i)

√
χ√
2γ

) +O(κ2). (A 6)

Another limit that we examine is χ → 0. In this limit, we have

α0 =

(
1

2
− i

2

)
Pe

κ3χ
tanh ((1 + i)κ) +O(χ3), (A 7a)

α1 = −
(
1

2
− i

2

)
Pe

κ3χ
tanh ((1 + i)κ) +O(χ), (A 7b)

α2 =
Pe

2γ2κ4
sech ((1 + i)κ) +O(χ), (A 7c)

cosh

(
(1 + i)

√
χ√
2γ

y∗
)

= 1 +O(χ). (A 7d)

The singular contributions from α0 and α1 cosh
(
(1 + i)

√
χ√
2γ
y∗
)
in (A 3) are canceled out

while the third term in (A 3) is regular. Overall A′
0(y

∗) is finite as χ → 0,

A′
0(y

∗) =
Pe

2γ2κ4

cosh ((1 + i)y∗κ)
cos ((1 + i)κ)

+
(1 + i)Pe

12γ2κ5

[
3i+

(
1− 3y∗2

)
κ2

]
tanh ((1 + i)κ) +O(χ). (A 8)

The last limit that we consider is
(
2κ2γ2 − χ

)
→ 0. We define ϵ =

(
2κ2γ2 − χ

)
. This

limit ϵ → 0 is of particular interest when we look at (A 4b) and (A 4c). We show that in
this limit,

α0 =

(
1

4
− i

4

)
Pe

γ2κ5
tanh ((1 + i)κ) +O(ϵ), (A 9a)

α1 = − Pe

κ2ϵ
sech ((1 + i)κ) +O(ϵ), (A 9b)

α2 =
Pe

κ2ϵ
sech ((1 + i)κ) +O(ϵ3), (A 9c)

cosh

(
(1 + i)

√
χ√
2γ

y∗
)

= cosh ((1 + i)κy∗) +O(ϵ). (A 9d)
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The singular contributions from α1 cosh
(
(1 + i)

√
χ√
2γ
y∗
)

and α2 cosh ((1 + i)κy∗) are

canceled out while the first term in (A 3) is regular. This shows in the limit ϵ → 0,
A′

0(y
∗) is finite, and A′

0(y
∗) takes the form

A′
0(y

∗) = η0 + η1 cosh ((1 + i)y∗κ) + η2 sinh ((1 + i)y∗κ) +O(ϵ), (A 10)

where

η0 =
(1− i)Pe

4γ2κ5
tanh ((1 + i)κ)− Pe

4γ2κ4

1

sinh ((1 + i)κ)
, (A 11a)

η1 = 1 + (1 + i)κ coth ((1 + i)κ) , (A 11b)

η2 = −y∗(1 + i)κ tanh ((1 + i)κ) . (A 11c)

Appendix B. The high-frequency limit

Here we analyze the governing equations (2.27) and (2.30) in the high-frequency limit
characterized by χ ≫ 1 while keeping the ratio χ/κ2 = α = 2ντR/H constant. That is,
α = O(1) as χ → ∞. We also assume that all other non-dimensional parameters are O(1)
as χ → ∞. To facilitate our analysis, we write the long-time solution to g as a Fourier
series,

g(y∗, ϕ, t∗) =
+∞∑

n=−∞
einχt

∗
gn(y

∗, ϕ). (B 1)

Inserting this expansion into equation (2.27), we obtain

inχgn + Pes sinϕ
∂gn
∂y∗

− γ2 ∂
2gn

∂y∗2

+
∂

∂ϕ

[
Re (Ω′∗)

1

2
(gn−1 + gn+1)− Im (Ω′∗)

1

2i
(gn−1 − gn+1)

]
− ∂2gn

∂ϕ2
= 0. (B 2)

The conservation condition becomes

1

2

∫ 1

−1

dy∗
∫ 2π

0

dϕ

+∞∑
n=−∞

einχt
∗
gn(y

∗, ϕ) = 1. (B 3)

Making use of orthogonality, we have

1

2

∫ 1

−1

dy∗
∫ 2π

0

dϕ g0(y
∗, ϕ) = 1, and

∫ 1

−1

dy∗
∫ 2π

0

dϕ gn(y
∗, ϕ) = 0, n ̸= 0. (B 4)

In the high-frequency limit, one can show that g0 = O(1) and g1 = o(1). At leading
order, we have

Pes sinϕ
∂g0
∂y∗

− γ2 ∂
2g0

∂y∗2
− ∂2g0

∂ϕ2
= 0. (B 5)

The no-flux condition is given by

Pes sinϕ g0 − γ2 ∂g0
∂y∗

= 0, y∗ = ±1. (B 6)

This shows that, at high frequencies, the governing equation for g, to leading order,
reduces to that of ABPs in a channel without flow. Similarly, one can show that the
displacement field also satisfies the equation without flow. As a result, the effective
dispersion coefficient approaches the no-flow result in the high-frequency limit.
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Appendix C. Brownian dynamics

The discretized Langevin equations are given by

xn+1 = xn + uf (yn, tn)∆t+ Us cos (ϕn)∆t+∆xB , (C 1a)

yn+1 = yn + Us sin (ϕn)∆t+∆yB , (C 1b)

ϕn+1 = ϕn +Ωf (yn, ϕn, tn)∆t+∆ϕB , (C 1c)

where∆t is the time step. The Brownian displacements∆xB ,∆yB , and∆ϕB are sampled
from independent white noise processes. The translational Brownian displacement has
a variance of 2DT∆t, and the rotary Brownian displacement has a variance of 2∆t/τR.
A potential-free algorithm is used to implement the no-flux condition (Heyes & Melrose
1993). For all simulations, a sufficiently small time step is used to resolve all the physical
timescales in the system. The total simulation time is long enough to ensure convergence
to the long-time behavior. To ensure good statistics, all simulations are performed with
200, 000 particles.

Appendix D. Numerical simulation

The governing equations (2.27) and (2.30) are solved numerically using Dedalus (Burns
et al. 2020). The physical space (y∗) is discretized on a Chebyshev grid with 128 nodes,
and the orientational space is represented in Fourier space with 128 nodes. For time
integration, we employ a second-order Crank-Nicolson-Adams-Bashforth scheme.
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