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Abstract
Many active matter systems are known to perform Lévy walks during migra-
tion or foraging. Such superdiffusive transport indicates long-range correlated
dynamics. These behavior patterns have been observed for microswimmers
such as bacteria in microfluidic experiments, where Gaussian noise assump-
tions are insufficient to explain the data. We introduce active Lévy swimmers to
model such behavior. The focus is on ideal swimmers that only interact with the
walls but not with each other, which reduces to the classical Lévy walk model
but now under confinement. We study the density distribution in the channel and
force exerted on the walls by the Lévy swimmers, where the boundaries require
proper explicit treatment. We analyze stronger confinement via a set of coupled
kinetics equations and the swimmers’ stochastic trajectories. Previous litera-
ture demonstrated that power-law scaling in a multiscale analysis in free space
results in a fractional diffusion equation. We show that in a channel, in the weak
confinement limit active Lévy swimmers are governed by a modified Riesz
fractional derivative. Leveraging recent results on fractional fluxes, we derive
steady state solutions for the bulk density distribution of active Lévy swimmers
in a channel, and demonstrate that these solutions agree well with particle sim-
ulations. The profiles are non-uniform over the entire domain, in contrast to
constant-in-the-bulk profiles of active Brownian and run-and-tumble particles.
Our theory provides a mathematical framework for Lévy walks under confine-
ment with sliding no-flux boundary conditions and provides a foundation for
studies of interacting active Lévy swimmers.
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Keywords: active matter, Lévy walk, confinement, fractional PDE

(Some figures may appear in colour only in the online journal)

1. Introduction

Active matter refers to systems of self-propelled particles or swimmers, such as motile cells
or synthetic Janus particles. In contrast to passive Brownian systems, active particles exhibit
intriguing behaviors including accumulation at confining boundaries, upstream swimming in
Poiseuille flow, and motility-induced phase separation (MIPS) [1–3]. The non-equilibrium
nature of active matter poses a number of theoretical challenges and has attracted considerable
interest in the past few decades. To aid in the understanding and prediction of the dynamics of
active matter, various theoretical models have been proposed, either at the particle scale [2] or
the macroscopic scale [4, 5]. Among them, stochastic dynamical models such as active Brow-
nian particles (ABP) and run-and-tumble particles (RTP) are widely used [1, 2, 6]. In these
stochastic models, an active particle self-propels with an intrinsic speed U0 and reorients on a
timescale τ due to either continuous rotary diffusion (ABP) or discrete tumbling events (RTP).
For ABPs and RTPs, the underlying reorientation is a Gaussian or Markovian process, respec-
tively. Other variants in this family such as active Ornstein–Uhlenbeck particles (AOUP) [7,
8] have been proposed as well. The directed swimming motion persists at short times (t � τ )
during which one observes ballistic motion of an individual particle. At times much larger
than τ , the swimming motion becomes a random walk characterized by the so-called swim
diffusivity, Dswim ∼ U2

0/τ .
However, many active biological systems such as albatrosses [9], bumblebees and deer [10],

bacteria [11–14], soil ameoba [15], fungi [16], T cells [17], as well as humans [18–20], are
known to exhibit super-diffusive behavior at long times described by Lévy processes [21–23].
Hydrodynamics of active suspensions can also induce Lévy motion of passive tracers [24]. In
particular, recent experimental works have shown that, under certain conditions, Escherichia
coli (E. coli) can travel comparatively large distances that exceed predictions from the RTP
model with exponentially-distributed run-times [11, 13]. Instead, a power-law distribution of
run-times that leads to Lévy motion has been shown to explain the observed persistent motion
[13]. Lévy motions are understood as a more advantageous foraging or search strategy than
Brownian motion in many settings [25–30], leading to applications in robotics and artificial
intelligence for better search pattern design [31–34].

As pointed out by Zaburdaev et al [23], when discussing Lévy motion, it is important to
distinguish Lévy walks from the earlier mathematical model of Lévy flights. The latter, by
definition, are jump processes with unbounded velocity magnitudes. At each time interval, a
spatial jump is drawn from an appropriate heavy-tailed distribution, leading to discontinuous-
in-time paths in the continuum limit. Such models violate Einstein’s locality principle in
physics, and the nature of instantaneous jumps make it impractical, if not impossible, to deal
with in interacting systems. The resolution of instantaneous jumps in overdamped Langevin
dynamics (of ABP, RTP, AOUP) was discussed by Fodor et al [35], while active matter mod-
els based on Lévy flights were proposed in Cairoli and Lee [36]. On the other hand, Lévy
walks involve particles that change direction at random times, but travel in each direction with
bounded (e.g. constant) velocity for a persistent time sampled from a heavy-tailed distribu-
tion. Such motion can be thought of as interpolation between ballistic motion and Brownian
motion. Fractional Brownian motion (FBM) has also been studied [37–40] in parallel to the
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Lévy walk model. FBM shares many similar behaviors with Lévy walks, but it is constructed
from correlated noise and falls within the framework of Gaussian processes.

In general, the continuum limit of Lévy processes is described by fractional-order calculus.
Since the first attempt on fractional calculus by Leibniz in 1695, mathematicians have devel-
oped this idea into a rich field where definitions for differentiation and integration abound
[41, 42], generalizing the concept of integer-order calculus in different ways. A fundamental
connection between fractional calculus and Lévy processes is suggested by the generalization
of the central limit theorem (CLT) [43–46], in which the average of independent, identically
distributed (i.i.d.) random variables with possibly infinite variance but power-law (Paretian)
tails converge to α-stable distributions [44, 47]. The Gaussian distribution is the special case of
finite variance statistics, corresponding to the Wiener (Brownian) process. Comparing the char-
acteristic function of anα-stable distribution with a Gaussian one then hints at the more general
formula of a fractional derivative in Fourier space, leading to the Riesz fractional derivative.
The development of the continuous-time random walk framework [48] and later Lévy walks
as a more physical alternative to Lévy flights [23] lead a wide variety of proposed fractional-
order models, especially in bounded domains. However, in many studies, the form of fractional
PDEs were hypothesized based on intuition or convenience rather than a rigorous derivation,
and explicit treatment of boundaries are often left out.

In many biological and industrial processes, such as infection by motile bacteria or the
formation of biofilms, active swimmers are confined by a boundary. An active particle with
a constant swim speed that collides with a wall keeps pushing against the wall and sliding
along it, and is able to swim away only after a reorientation event that turns it into the bulk.
This steric interaction leads to a boundary accumulation layer of active particles at the wall,
whereas passive Brownian particles exhibit a uniform density distribution in the entire domain.
This behavior has been exploited to design several interesting mechanical systems including
microscale gears powered by motile bacteria suspensions [49] and mechanical traps used to
collect bacteria from the surrounding fluid [50–52]. In the presence of flow, such as in the
human urinary tract and medical catheters, the vorticity of the flow orients the particles in the
accumulation boundary layer to pointing upstream, and this upstream swimming of bacteria
often leads to infection [53, 54]. Nano-robots [55] usually work in confined geometries, espe-
cially in porous networks such as human blood vessels. Better understanding of the density
distribution in these bounded geometries can assist the design of devices and robots, further
advancing environmental or medical engineering applications. Previous literature has consid-
ered confinement effects of ABPs [56] and RTPs [57, 58], where the non-uniform steady state
density across a channel is due to boundary layer accumulations.

Motivated by the recent biological and microfluidic experiments [11–14], as well as
progress in derivations of fractional PDE’s from stochastic kinetics of Lévy walks in
unbounded domains [59, 60], here we propose a model of micro-swimmers that perform Lévy
walks in bounded domains, and refer to these swimmers as active Lévy swimmers. Whereas
the Lévy walk model only concerns the trajectory of a single walker, our active Lévy swimmer
model can incorporate physical interactions among the swimmers at finite packing density and
with other objects as well as with the confining geometry. Moreover, while elastic reflecting
boundary conditions have been considered for Lévy walks in 1D [61], leading to uniform bulk
density distributions at steady-state, we impose hard sphere interactions that are widely used
to model active swimmers, leading to sliding no-flux boundary conditions.

In this first work, we consider the ideal case where the swimmers do not interact with each
other, but only with the walls. We derive a full set of transport equations for the probability
density function of the Lévy swimmers, and analyze the limits of weak and strong confine-
ment. In the weak confinement limit, we show that these equations reduce to a fractional-order
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Figure 1. Schematic of a Lévy swimmer confined in a 2D channel. The run-time τ fol-
lows a Lomax distribution, featuring a power-law tail. When the swimmer encounters a
wall, it will maintain its orientation and slide along the wall before tumbling.

diffusion equation with sliding no-flux boundary conditions for the number density. We report
U-shaped bulk density distributions at steady state, in contrast to the constant-in-the-bulk pro-
files of ABPs and normal RTPs. Our theory provides a foundation for studies of interacting
active Lévy swimmers.

2. The model

As shown in figure 1, an active Lévy swimmer is a sphere that propels itself with a constant
swim force. We neglect hydrodynamic interactions. In Stokes flows, inertia is negligible and
this results in a constant swim speed U0q when not interacting with other swimmers or with a
wall, where q is the unit vector representing the orientation. The swimmer changes the orien-
tation of the swim force—hence the velocity direction q—stochastically, a behavior referred
to as tumbling. The run-time τ between two consecutive tumbles is sampled from a type-II
Pareto distribution (also known as the Lomax distribution [62, 63])

ψ(τ ) =
ατα0

(τ + τ0)α+1
, (1)

where τ 0 is a characteristic timescale. It is known that when 0 < α < 1 the mean run-time τm

diverges and Lévy walks in this regime display weak ergodicity breaking [63], so that the time
average differs from the ensemble average. We will restrict our model of Lévy swimmers to
1 < α < 2; in this case, the mean run-time τm is finite and related to the characteristic timescale
via

τm =
τ0

α− 1
. (2)

The α > 2 regime is expected to converge to the Brownian limit since the variance σ2 is finite
and is given by σ2 = τ 2

mα/(α− 2). We compare the results from Lévy swimmers with those
of α = 3 > 2, using the later case to represent Gaussian models by appealing to the CLT.
When a Lévy swimmer collides with another swimmer, it is constrained by hard sphere repul-
sions. When it collides with a wall, it is constrained by hard wall repulsion and remains free
to slide along the wall, in a similar way to a Skorokhod boundary condition for Brownian
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motion [64, 65]. Specific details of the particle simulations used in this article are given in
appendix A

For simplicity, we perform analysis for non-interacting Lévy swimmers confined by walls of
a channel. We analyze the density distribution and forces exerted on the walls through kinetic
equations, and rigorously prove a fractional diffusion equation governing the steady state den-
sity in the weak confinement limit by extending the works of references [59, 60, 66]. Our
results are compared to particle simulations. In section 5, we show that at steady state, Lévy
swimmers maintain a U-shaped bulk distribution even at weak confinement, in contrast to the
accumulation boundary layer effect of ABPs and RTPs, which scales with activity, manifesting
the fundamental difference between Lévy processes (fractional-order) and Gaussian processes
(integer-order).

3. Transport equations for ideal Lévy swimmers in a channel

The stochastic process of Lévy swimmers can be described by a set of transport equations for
the particle probability distribution. There are two features that are noteworthy compared with
the ABP/RTP model. First, there is no explicit translational diffusion; as a result, we expect
singular accumulation of the particles on the boundaries, as would occur even for normal RTP
with exponentially distributed run-times [58]. Second, both ABP and normal RTP are essen-
tially Markovian and lose memory at the long-time limit. However, this Markovian property is
lost for Lévy swimmers given the slow power-law decay of their run-time distribution. Hence,
we have to explicitly keep track of the current run-time variable of the Lévy swimmer, denoted
by τ [60, 67]. With these in mind, we can write down the kinetics in 2D. The distribution of
particles inside the channel of width H is governed by(

∂

∂τ
+

∂

∂t
+ U0q · ∇

)
P(x, y, t, τ , θ) = −β(τ )P(x, y, t, τ , θ), (3)

where q = (cos θ, sin θ) is the unit vector for particle orientation, and −H/2 < y < H/2. The
term β(τ ) is the tumbling rate function, which is generally a function of the current run-time
τ . For active Lévy swimmers it is given by

β(τ ) =
α+ 1
τ + τ0

, (4)

In the case of normal RTP, β = 1/τm, a constant, and equation (3) reduces to the Smolu-
chowski equation (10), as shown below.

This equation can be understood by considering an infinitesimal time interval dt: the proba-
bility density P is shifted in space-time by the material derivative (∂/∂t + U0q · ∇)Pdt. For all
swimmers that did not tumble during dt, their current run-time increases by dτ = dt, hence the
term ∂P/∂τ in equation (3). A fraction of the swimmers β(τ )Pdt tumbled to other directions
during dt, giving the sink term on the rhs of equation (3). All of these swimmers that just tum-
bled now have their current run-time renewed to be τ = 0, hence giving the initial condition
for τ ,

P(x, y, t, 0, θ) =
1

2π

∫ t

0
β(τ ′) dτ ′

∫ 2π

0
P(x, y, t, τ ′, θ′) dθ′. (5)

Similarly, for the probability density on the upper wall, we have

∂φ+

∂τ
+

∂φ+

∂t
+ U0 cos θ+

∂φ+

∂x
= −β(τ )φ+ + j+b , (6)
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where φ+ is short for the number density φ on the wall at the upper wall y = H/2,

φ+ = φ(x, y = H/2, t, τ , θ). (7)

The additional source term j+b is the net flux of swimmers going from the bulk into the upper
wall at y = H/2

j+b = U0P(x, y = H/2, t, τ , θ+) sin(θ+). (8)

The equation for the lower wall at y = −H/2 is symmetric to that of the upper wall and is
omitted here. The superscripts on θ± is a reminder of 0 < θ+ < π and −π < θ− < 0.

The bulk density flux close to the wall is coupled with the swimmer flux tumbling from the
wall through∫ t

0
β(τ )dτ

1
2π

∫ π

0
dθ′φ+ = φ+(x, t, 0, θ+) = −P(x, y = H/2, t, 0, θ−)U0 sin θ−. (9)

In this setting, the only parameter for RTPs is the strength of confinement �/H, where
� = U0τm is the average run length. For Lévy swimmers there is another parameter, the power-
law index α of run-time distributions, independent of the average run-time τm. At steady state,
equations (3)–(9) can be further simplified; see appendix B.

We note that one can recover the equations for normal RTPs from the above general kinetic
equations (3)–(6). In that case β(τ ) = β = 1/τ 0 is a constant, hence integration over τ is trivial
and gives (

∂

∂t
+ U0q · ∇

)
p(r, t, θ) =

1
2π

∫ 2π

0
p(r, t, θ′)dθ′ − βp(r, t, θ)

− P(r − U0tq, 0, 0, θ)e−βt

= Lp− P(r − U0tq, 0, 0, θ)e−βt, (10)

where

p(r, t, θ) =
∫ t

0
P(r, t, θ, τ )dτ , (11)

is the reduced probability density, and the turning operator L is defined [68, 69] by

Lp =
1

2π

∫ 2π

0
p(r, t, θ′)dθ′ − βp(r, t, θ). (12)

In the long time limit, the last term of equation (10) represents the exponentially vanishing
initial condition, and is usually omitted in multiscale analysis of RTPs.

4. Limit of strong confinement: no time to tumble in the bulk

When �/H � 1, the confinement is very strong, so the swimmers barely tumble in the bulk
of the channel. Therefore, one expects the swimmers to contribute equally to the bulk density
profile at each point in space since they merely cross the channel width with a constant speed.

In 1D this is asymptotically true for both Lévy and normal swimmers when their aver-
age run-time τm is longer than the channel crossing time tc = H/U0. As shown in figure 2,
the simulated bulk density becomes almost flat in the strong confinement limit for which
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Figure 2. Simulated bulk density profile n of swimmers with (a) α = 1.2, (b) α = 1.5
and (c) α = 3.0 in a 1D channel. The strong confinement limit of (a)–(c) and the weak
confinement limit of (a) and (b) agree with the analysis in sections 4 and 5. In contrast
to (a) and (b), (c) reveals convergence to the Gaussian limit with a constant bulk density
and a thin boundary layer for �/H � 1, due to the finite variance of Pareto distribution
with α = 3 > 2. This is consistent with the RTPs results reported in reference [58]. In
all subfigures (a)–(c), when normalizing the densities, only swimmers in the bulk, but
not on the wall, are included. The swimmers accumulated on the walls are not shown
here but they give rise to the forces on the wall shown in figure 4(a).

�/H > 1. In figure 2 (as in figure 3), each simulation curve integrated over the interior of
the channel gives the corresponding bulk fraction of swimmers, not including the singular
accumulation on the walls. In the strong confinement limit the fraction of swimmers accu-
mulated exactly on the wall can be estimated by time average of the individual trajectories,
noting that we restrict the power-law index α > 1 so that time average equals the ensemble
average [63]. In 1D, the time spent inside the bulk is a constant tc. The fraction of swim-
mers in the bulk is then f bulk = H/�. Since in 1D the swimmer only takes orientations of
either to the left or to the right, this partitioning between bulk and boundary immediately
translates into the force on the wall, as in equation (13). As the confinement strength �/H
increases, larger fractions of swimmers are stuck on the wall. Hence, the total bulk fraction
shown on the plots decreases from blue (�/H = 0.01) to orange (�/H = 1) to green (�/H = 10)
curves.

In 2D, the analysis remains true in the same asymptotic limit, with the slight modification
that the swimmer orientation now ranges in [0, 2π). At strong confinement, this leads to an
O((H/�)2) correction to the average channel crossing time. The polar order distribution on the
wall is modified by a prefactor of 1

π

∫ π

0 sin(θ)dθ = 2/π. The force exerted on a wall of the
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Figure 3. Simulated bulk density profile n of swimmers with (a) α = 1.2 (b) α = 1.5
and (c) α = 3.0 across a 2D channel. The weak confinement limit of (c) converges to the
CLT prediction of constant in the bulk, proving that the U-shape density profile in (c)
for intermediate �/H is only a boundary layer effect [58], while in (a) and (b) it is a bulk
property of the superdiffusive behavior. When normalizing the densities, only swimmers
in the bulk but not on the wall are included. The swimmers accumulated on the walls are
not shown here but they give rise to the forces on the wall shown in figure 4(b).

channel is therefore

Fwall =
Cd

2

(
1 − H

�

)
NζU0 (13)

where N is the number of swimmers confined inside the channel, ζU0 is their swim force, and
Cd = 1 for 1D and Cd = 2/π for 2D. As show in figures 2 and 3, the profiles for �/H = 10
have almost converged to uniform density distributions, confirming the above analysis. Each
simulation curve integrated over the domain gives the corresponding bulk number of swim-
mers, not including the singular accumulation on the walls. As shown in figure 4(a), the force
asymptotes represented by equation (13) agree well with the results of our particle simulations
for large �/H. The same figure illustrates how the singular accumulation at the walls, quantified
by Fwall, varies with �/H.

5. Limit of weak confinement: fractional diffusion

When �/H � 1, we expect that the swimmers in the bulk do not ‘see’ the boundary of
the domain easily, and so can be modeled by the same equations as swimmers in free
space, but with boundary conditions. In this section, we show this gives rise to a fractional
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Figure 4. Forces of swimmers with α ∈ {1.2, 1.5, 3} exerted on the wall in (a) 1D
and (b) 2D channels. The asymptotes are from the strong confinement limit analysis
in section 4, which is expected to be more accurate as �/H becomes larger. (c) Distri-
bution of the polarization m+ (see equation (44)) of 2D Lévy swimmers with α = 1.2
pointing toward the upper wall.

diffusion equation involving the Riesz definition of fractional derivatives in finite domains
together with a no-flux boundary condition recently introduced by Kelly et al [70] and
Baeumer et al [71].

In this limit, at times t much larger than τm, the system reaches a superdiffusive regime.
This permits a multiscale analysis using a Hilbert expansion technique [72] to coarse-grain
over the short time τ of ballistic motion. To prepare for this analysis, the kinetic equation (3)
can be cast in Fourier space as(

∂

∂τ
+

∂

∂t
+ U0q · (iξ)

)
P̂(ξ, t, τ , q) = −β(τ )P̂(ξ, t, τ , q); (14)

here, we define the Fourier and inverse Fourier transforms, respectively, as

F [u](ξ) =
1

(2π)d/2

∫
e−ir·ξu(r)dr, (15)

F−1[û](r) =
1

(2π)d/2

∫
eir·ξû(ξ)dξ, (16)

with the shorthand û = F [u]. We then integrate equation (14) over τ for the reduced probability
density

p̂(ξ, t, q) =
∫ t

0
P̂(ξ, t, τ , q)dτ. (17)

9
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In Fourier space, this leads (see equation (14) of reference [60]) to(
∂

∂t
+ U0q · (iξ)

)
p̂(ξ, t, q) = (T − I)

∫ t

0
β(τ )P̂ dτ (18)

where I is the identity operator and T [ f (q)] =
∫

S f (q′)dq′ is the turn angle operator, with S
denoting the unit sphere in R

d.
Our goal is to derive the governing equation for the number density of swimmers

n(r, t) :=
∫

S
p(r, t, q)dq. (19)

The conservation of number density is expressed by

∂n
∂t

+∇ · j = 0, (20)

where j is the flux, which is defined as

j(r, t) :=
∫

S
U0qp(r, t, q)dq. (21)

5.1. Derivation of fractional-order flux via Hilbert expansion

References [59, 60, 66] show that by assuming a superdiffusive power-law scaling for the
leading order equation obtained in the Hilbert expansion analysis of equation (18), a fractional-
order governing equation can be derived for the number density n in free space. We summarize
their derivation below, with the modification that the equations are represented in Fourier space.
By expressing the derivations of Estrada-Rodriguez et al [60] in Fourier space, their formal
expansions in powers of differential operators become expansions in powers of scalars, which
are well-defined. In turn, this justifies the definition of the specific fractional-order gradient
operator in their final results. This operator was introduced by Meerschaert et al [73] as

F
[
∇α−1u

]
(ξ) =

[∫
S
q(iξ · q)α−1 dq

]
û(ξ); (22)

Clarification of the specific fractional-order gradient operator is critical, as there are several
notions of gradient in fractional calculus that are not equivalent [74, 75].

Starting from equation (18), Estrada-Rodriguez et al [60] showed p(r, t, q) can be formally
expanded in terms of q · ∇, which is rigorous in Fourier space since q · ∇ transforms into the
scalar q · (iξ). The leading order of their expansion led to equation (46) in their article, which
in Fourier space, and in the absence of external source terms, is represented as∫

S
q

(α− 1)
τ0

q · ĵ dq =

∫
S
qτα−2

0 (1 − α)2Γ(1 − α)Uα
0 (q · (iξ))α−1n̂ dq. (23)

In our case, this expression is simplified due to the uniform distribution of orientation angle
after tumbling events. Estrada-Rodriguez et al [60] then show that∫

S
q

(α− 1)
τ0

q · ĵ dq =
(α− 1)

τ0
ĵ. (24)
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As a result of the last two equations, the Fourier transform of the flux ĵ can be related to the
Fourier transform of the number density n̂,

ĵ =
π(α− 1)τα−1

0 Uα
0

sin(πα)Γ(α)

∫
S
q(q · iξ)α−1n̂ dq. (25)

This coincides with the definition of the fractional gradient (22), and when transformed to real
space gives

j =
π(α− 1)τα−1

0 Uα
0

sin(πα)Γ(α)
∇α−1n. (26)

Inserting the flux expression into the conservation equation (20), and using the property
[73]

∇ · ∇α−1 = −(−Δ)α/2, (27)

this finally leads to

∂n
∂t

− Cα(−Δ)α/2n = 0, (28)

where Cα = π(α− 1)τα−1
0 Uα

0 / [sin(πα)Γ(α)] and the fractional Laplacian is defined as

−(Δ)α/2n(r) =
2αΓ

(
α
2 + d

2

)
πd/2|Γ(−α/2)|

∫
Rd

n(r) − n(r′)
|r − r′|d+α

dr′. (29)

It is possible to write

−(−Δ)α/2n = ΔI2−αn (30)

where I2−α is a Riesz potential of order 2–α applied to n, the inverse Fourier transform of
which is |ξ|−(2−α)n̂. As a result, one can write equation (28) as

∂n(r, t)
∂t

= −Cα Δ

∫
Rd

n(r′, t)
|r − r′|1−(2−α)

dr′. (31)

It is possible then to restrict integration of r′ to the channel. We take this step in the following
section after considering the steady state of equation (28).

We remark here on equation (28): It is known that this fractional diffusion governs the
probability distribution of a Lévy flight process in free space, with the solution exhibiting
unbounded support due to the unbounded jumps inherent to the flight paths. Nevertheless,
it has been derived as a first-order governing equation for the Lévy walk model that describes
non-interacting active Lévy swimmers. Zaburdaev et al [23] has demonstrated that the bulk
density profile of Lévy walkers in free space is approximated by a Lévy stable distribution
supported between two ballistic peaks that propagate with constant velocity. This result is con-
sistent with the derivation of equation (28) as a leading-order equation for the distribution of
Lévy walkers. Below, we carefully show how boundary conditions can be utilized to constrain
the solution of equation (28) to describe the properties of the active Lévy swimmers introduced
in section 2. We also note that a Hilbert expansion analysis of normal RTP in 1D results in a
telegraph equation [72, 76], which yields a propagating front with finite speed due to a second
order time derivative term. It is possible that a more careful multiscale analysis for Lévy walks,
which includes higher order effects, may yield an additional hyperbolic term in equation (28)
to properly characterize the ballistic front.
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5.2. Zero exterior condition and no-flux boundary condition for the channel geometry

In the previous section, we reviewed that a fractional diffusion equation governs the num-
ber density n. Here, we clarify the boundary conditions required to close the description of
the active Lévy swimmers confined in the channel. Due to their discontinuous-in-time paths,
boundary conditions for Lévy processes raise complicated issues, often requiring exterior
conditions for their governing equations instead of standard boundary conditions [77].

According to the hard-wall interactions inherent in our model of active Lévy swimmers
described in section 2, particles cannot pass through boundaries of the channel, which manifests
in two properties. First, the density vanishes,

P(r, t, τ , q) = 0, (32)

for r outside of the channel, which implies that

n(r, t) = 0. (33)

Second, the flux vanishes,

j(r, t) = 0, (34)

when r lies on the channel wall. For a classical diffusion equation, only the second condi-
tion is required, as it provides a Neumann boundary condition which determines the solu-
tion up to a constant. However, the fractional Laplacian (29), due to its nonlocal nature,
requires an exterior condition represented by equation (33) to be well-defined [77]. Below,
we will use conditions (33) and (34) in distinct ways to derive the steady state solution to
equation (28).

5.3. Steady state in 1D

In 1D, the fractional Laplacian in equation (28) reduces to the Riesz (or the Riesz–Feller)
fractional derivative in one dimension [70]. This operator can be written for 1 < α < 2 as

∂αn(y)
∂|y|α =

Cα

Γ(2 − α)
d2

dy2

∫ ∞

−∞

n(x)
|y − x|α−1

dx. (35)

Using the exterior condition (34), which in 1D implies that n(y) = 0 for y /∈ [−H/2, H/2], this
reduces to

∂αn(y)
∂|y|α =

Cα

Γ(2 − α)
d2

dy2

∫ H/2

−H/2

n(x)
|y − x|α−1

dx. (36)

Therefore, the steady state of equation (28) can be written as

0 =
∂αn(y)
∂|y|α =

Cα

Γ(2 − α)
d2

dy2

∫ H/2

−H/2

n(x)
|y − x|α−1

dx. (37)

No-flux boundary conditions for the steady state equation (37) were derived by Kelly et al
[70]. They introduced the Riemann–Liouville flux, which in the symmetric case is given by

jRL =
Cα

Γ(2 − α)
d
dy

∫ H/2

−H/2

n(x)
|y − x|α−1

dx. (38)

12
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This allowed them to write the steady state equation (37) in conservation form,

0 =
d jRL

dy
=

d
dy

(
Cα

Γ(2 − α)
d
dy

∫ H/2

−H/2

n(x)
|y − x|α−1

dx

)
. (39)

Comparing this equation to equation (20) shows that jRL can be identified with j in 1D, so that
the no-flux boundary condition (34) implies jRL = 0 for y = ±H/2. Kelly et al [70] derived a
general solution to equation (37), which under the no-flux condition reduces to

n(y) = C0

(
1
4
− y2

H2

)α/2−1

, (40)

where C0 is a normalization constant determined by conservation of total number of swimmers.
As shown in figures 2(a) and (b), the analytical solution agrees well with our simulation data

in the weak confinement limit (�/H � 1). In plotting figures 2 and 3(a) and (b), the analytic
curve is normalized to have the same number of total swimmers as that of the bulk from the
simulations. The fraction of swimmers accumulated on the wall push against the wall with a
constant force, giving rise to the force measured in figure 4(a).

We remark that, in 1D, equation (28) with the boundary conditions (33) and (34) also gov-
erns the evolution of the density ofα-stable Lévy flights with the ‘stopping’ boundary condition
studied by Dybiec et al [61]. This condition is defined by the property that a flier which attempts
to leave the interval is stopped near the corresponding endpoint until another jump is drawn
from the α-stable distribution that moves it back into the bulk. In this context, Denisov et al
[78] derived a steady-state solution that agrees with equation (37). However, the prescription
of ‘stopping’ boundary conditions for Lévy flights in higher dimensions is more subtle and
is not expected to agree with the sliding no-flux boundary conditions prescribed in our active
Lévy swimmer model. We also remark that the shape of our steady state solution is similar to
that observed for reflected FBM [40].

5.4. Steady state in 2D

In 2D, we expect the steady state of the number density to be independent of the longitudinal
coordinate x, i.e. n(x, y) = n(y); see figure 1. In this case, we show that the fractional Laplacian
of n(x, y) in equation (28) reduces to the one-dimensional Riesz derivative in y. In the classical
case of integer order derivatives, this follows immediately from the expansion of the Laplacian
in partial derivatives; in the fractional case, it requires a more involved proof.

In Fourier space, the fractional Laplacian can be represented as

Fx,y[−(−Δ)α/2n(x, y)](ξ, η) = |ξ2 + η2|α/2Fx,y[n](ξ, η)

= |ξ2 + η2|α/2Fx

[
Fy[n](η)

]
(ξ, η)

= |ξ2 + η2|α/2Fy[n](η)δ(ξ). (41)

In the above Fx , Fy and Fx,y denote the Fourier transform in x, y, and (x, y), respectively; for
an absolutely integrable function u(x, y), these satisfy

Fx,y[u](ξ, η) = Fx[Fy[u](x, η)](ξ, η). (42)

In equation (41), the frequency variable ξ corresponds to transformation in x, while η corre-
sponds to transformation in y. The last equality in (41) uses the fact thatFy[n](x, η) = Fy[n](η)
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does not depend on x, yielding a δ-function Fourier transform in x. Taking the inverse Fourier
transform, we obtain

−(−Δ)α/2n(x, y) = F−1
ξ,η

{
|ξ2 + η2|α/2Fy[n]δ(η)

}
= F−1

η

{
|η2|α/2Fy[n](η)

}

=
∂αn(y)
∂|y|α . (43)

The Fourier representation of the Riesz derivative used to obtain the final line can be found
in, e.g. reference [45]. Therefore, the steady-state equation for n(y) in 2D is identical to
equation (37) from the 1D case, with the same exterior and no-flux boundary conditions. It
has the same solution (40). The solutions are compared with particle simulations in figure 3.
As in 1D, the density profiles shown only include swimmers in the bulk but not on the walls. A
swimmer accumulated on the wall pushes against the upper/lower wall, and the normal com-
ponent of the force F sin θ± is balanced by the wall. Averaged over swimmers for a finite time
period this gives the force measured on the wall in figure 4(b). Although we observe no local
polar order in the bulk, the polar order of only those swimmers oriented toward the upper wall
is not zero and not symmetric with respect to the center line of the channel

m+(y) =
∫ π

0
cos(θ+)p(y, t = ∞, θ+)dθ+. (44)

This quantity is plotted in figure 4(c).

6. Comparisons between ABPs, normal RTPs and active Lévy swimmers

Here we comment on the differences and similarities among the three species of active matter
models. First, we compare ABPs and normal RTPs. It has been shown by a mean-field treatment
of phenomenologicalmodels [3, 79, 80] that ABPs and RTPs behave similarly macroscopically,
for example in MIPS. To further compare RTPs and ABPs, we prove that the stochastic dynam-
ics of non-interacting ABPs leads to an exponential decay of their velocity autocorrelation
function, coinciding with that of normal RTPs.

Without loss of generality we consider the 2D case. The stochastic dynamics of an ABP
moving in xy plane can be described by the Langevin equation

v̇(t) = η(t)ez × v(t), (45)

with

〈η(t1)η(t2) · · · η(t2m−1)〉 = 0

〈η(t1)η(t2) · · · η(t2m)〉 =
∑
<i, j>

σ2mΠ<i, j>δ(ti, t j) � M2m, (46)

where v is the velocity vector, η(t) a Gaussian noise, and ez the unit vector in z direction. The
decomposition of higher order moments into variance are due to the Wick theorem [81] for
Gaussian noise.

By recursively expanding the velocity Langevin equation one can show that the Wick
theorem leads to exponential decay of the velocity autocorrelations; see appendix C for this
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derivation. Using that result, the MSD for non-interacting ABPs is [6, 82]

〈
r2(t)

〉
= v2

0

〈∫ t

0
dτ

∫ t

0
dτ ′e−

σ2
2 |τ−τ ′ |

〉
=

4v2
0

σ2

(
t − 2

σ2

(
1 − e−

σ2
2 t

))
, (47)

which at long times satisfies the scaling relation〈
r2(t)

〉
∝ t as t →∞, (48)

while the MSD for non-interacting Lévy swimmers scales as [23]〈
r2(t)

〉
∝ t3−α as t →∞. (49)

This reveals that ABPs exhibit behavior that is ballistic at short time scales, and normally dif-
fusive at long time scales. This also holds for normal RTPs, as can be shown using Hilbert
expansion analysis [68, 69]. In contrast, the Lévy swimmers exhibit superdiffusive propaga-
tion at long times. The Lévy swimmers also exhibit ballistic behavior at short time scales, but
the ballistic front of the densities of ABP/RTP and Lévy swimmers are qualitatively differ-
ent. The short persistent times of ABP/RTP yields ballistic fronts that decay rapidly, leading
to a self-similar property of the density in time characterized by a length scale proportional
to t1/2. This is consistent with the MSD scaling given by equation (48). In contrast, the bal-
listic front of the density of Lévy swimmers, while decaying, persists to an extent that the
density is not self-similar in time. However, the center of the density profile follows a self-
similar scaling proportional to t1/α [23], which is distinct from the MSD scaling given by
equation (49).

Active Lévy swimmers share the discrete tumbling behavior as normal RTPs; neither involve
translational diffusion. Our analysis and simulations show clearly a singular accumulation of
active Lévy swimmers on the walls of the channel, similar to RTPs. However, most impor-
tantly, the correlation of Lévy swimmers in the bulk is qualitatively non-local and the density
distributions converge to a non-uniform steady-state distribution inside the bulk at small �/H,
which is well approximated by the steady-state solution (37). This novel aspect distinguishes
active Lévy swimmers from both RTPs and ABPs.

7. Conclusion and discussions

We introduce a model for active swimmers with Lévy statistics under confinement. The Lévy
swimmers are characterized by the power-law tail of their run-time distribution ψ(τ ), which is
taken as the Pareto distribution, and a constant swim force and hence a constant velocity mag-
nitude U0 between tumbling events when not interacting with other objects. On the domain
boundaries we assume the Lévy swimmers follow the Skorokhod sliding condition, similar to
the ABP and RTP models. Our modification to previous multiscale analysis (Hilbert expan-
sion) shows that a fractional diffusion equation still holds as the leading order description in
the weak confinement regime, with the Riesz fractional derivative and no-flux boundary con-
ditions. In this asymptotic limit of �/H → 0 the Lévy swimmers show qualitative difference
from the ABP and RTP models, with a non-uniform U-shaped bulk density distribution. This
is distinctive from the accumulation boundary layer effect of ABPs and RTPs, which scales
with activity and dimishes as �/H decreases, eventually recovering a uniform bulk distribu-
tion. In the strong confinement limit neither the Lévy swimmers nor the RTPs have time to
tumble in the bulk of the channel, which results in a uniform bulk density profile. The frac-
tion of swimmers accumulated and the force exerted on the walls are shown to converge to
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an analytic asymptote. Our analysis agree with particle simulations of stochastic trajectories
of the swimmers. Here, we show results for 1D and 2D only, but the analysis can be easily
generalized to 3D.

One advantage of our Lévy swimmer model compared to Lévy flights or walks is that
the only prescription of swim force and drag coefficient readily admits extensions to inter-
acting swimmers with finite sizes. In our preliminary simulations we have observed MIPS
of Lévy swimmers interacting with the Weeks–Chandler–Andersen (WCA) potential [83]
at high packing density and activity. In future work, we will investigate how the phase dia-
gram and the universality class may change from ABPs and normal RTPs to Lévy swim-
mers. It is also interesting to compare the behaviors of Lévy swimmers with ABP/RTP in an
external field.

Our study of active Lévy swimmers connects the physics of Lévy walks with recent devel-
opments in fractional calculus. This provides a mathematical foundation to study Lévy walks
with interactions confined in more general geometries. The distinguishing properties of active
Lévy swimmers, as compared to RTP and ABP models, show that they are a promising model
for active matter in upstream swimming and transport in porous media.
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Appendix A. Details of particle simulations

Our simulation data for figures 2, 3 and 4 were obtained from the stochastic dynamics of the
Lévy swimmers described in section 2. At the beginning of each simulation, 100 000 swim-
mers are released from randomized initial positions within the channel, with uniformly random
initial orientations. A run-time sampled from the type-II Pareto distribution ψ(τ ) given by
equation (1) is assigned to each swimmer. After a swimmer runs for this time, it is assigned
a new orientation from a uniform angular distribution. In 1D, this assigns probabilities of 1/2
for both the left and right directions. In 2D, θ is distributed in [0, 2π). At the same time, a
new run-time is sampled again from ψ(τ ) and assigned to this swimmer. Between these tum-
bling events, a swimmer’s trajectory is explicitly integrated with a timestep of Δt = 10−4τm.
When it hits the walls, the sliding no-flux boundary condition is imposed via a potential-free
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algorithm [84]. In 2D, a periodic boundary condition is imposed for the direction along the
channel. Each simulation is run for O(102τm) to ensure sufficient convergence to the steady
state, and statistics are measured by averaging over all swimmers for the last O(10τm) time
interval.

Appendix B. Kinetic equations at steady state

At steady state, explicit dependence on time and on the direction x parallel to the channel
disappears. Hence, in 2D the microscopic equations (3)–(9) reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂τ
+ U0 sin θ

∂

∂y

)
P(y, θ, τ ) = −β(τ )P(y, θ, τ )

∂φ+

∂τ
= −β(τ )φ+ + j+b

j+b = U0P(y = H/2, τ , θ+) sin θ+

φ+(τ = 0, θ+) = −P(y = H/2, τ = 0, θ−)U0 sin θ−

=

∫ t

0
β(τ )dτ

1
2π

∫ π

0
dθ′φ+

≈
∫ ∞

0
β(τ )dτ

1
2π

∫ π

0
dθ′φ+.

(B.1)

In 1D, the steady state equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂τ
+ U0

∂

∂x

)
P±(x, τ ) = −β(τ )P±

∫ t→∞

0
β(τ )dτP± = P∓(x, τ = 0)

∂φ+

∂τ
= −β(τ )φ+ + j+b

j+b (τ ) = U0P+(x = H/2, τ )∫ ∞

0
d τβ(τ )φ+ = U0P−(x = H/2, τ = 0).

(B.2)

Appendix C. Derivation of velocity autocorrelation function for ABPs

Using a triple product identity and the fact that the particle moves in the xy plane,

ez × (ez × v) = (ez · v)ez − (ez · ez)v = −v. (C.1)

Therefore, we can recursively expand the velocity as

ez × v(t) = ez ×
(
v0 +

∫ t

0
dτ η(τ )ez × v(τ )

)

= ez × v0 −
∫ t

0
dτ η(τ )v(τ ), (C.2)
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where v0 is the initial velocity. Hence

〈v(t)〉 = v0 +

∫ t

0
dt1 〈η(t1)ez × v(t1)〉

= v0 +

∫ t

0
dt1

(
〈η(t1)〉 ez × v0 −

∫ t1

0
dt2 〈η(t1)η(t2)v(t2)〉

)

= v0 −
∫ t

0
dt1

∫ t1

0
dt2 〈η(t1)η(t2)v(t2)〉

= v0 −
∫ t

0
dt1

∫ t1

0
dt2 〈η(t1)η(t2)〉

+

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0

4∏
i=1

dti 〈η(t1)η(t2)η(t3)η(t4)〉 − · · ·

= v0

(
1 − tσ2/2 +

t2

2
σ4/4

)
−
∫

. . . 〈. . .v(t6)〉

= v0

∞∑
n=0

1
n!

(−tσ2/2)n

= v0e−tσ2/2. (C.3)

The above derivation follows from applying the Wick theorem [81]. Due to the hierarchy
of upper limits of integrations, only the leading term of the Wick summation survives. The
evaluation of the integrals uses equation (46) and the fact that

δ(x − y) = lim
τ→0

{
1/τ if |x − y| < τ

0 otherwise.
(C.4)
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[5] Jülicher F, Grill S W and Salbreux G 2018 Hydrodynamic theory of active matter Rep. Prog. Phys.
81 076601

18

https://orcid.org/0000-0002-1766-719X
https://orcid.org/0000-0002-1766-719X
https://orcid.org/0000-0002-9486-2837
https://orcid.org/0000-0002-9486-2837
https://orcid.org/0000-0001-5817-9128
https://orcid.org/0000-0001-5817-9128
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1088/1361-6633/aab6bb
https://doi.org/10.1088/1361-6633/aab6bb


J. Phys. A: Math. Theor. 54 (2021) 275002 T Zhou et al

[6] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Active Brownian
particles Eur. Phys. J. Spec. Top. 202 1–162

[7] Fodor É, Nardini C, Cates M E, Tailleur J, Visco P and van Wijland F 2016 How far from equilibrium
is active matter? Phys. Rev. Lett. 117 038103

[8] Fodor É and Marchetti M C 2018 The statistical physics of active matter: from self-catalytic colloids
to living cells Physica A 504 106–20

[9] Viswanathan G M, Afanasyev V, Buldyrev S V, Murphy E J, Prince P A and Stanley H E 1996 Lévy
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by Lévy Walk Appl. Environ. Microbiol. 87

[14] Korobkova E, Emonet T, Vilar J M G, Shimizu T S and Cluzel P 2004 From molecular noise to
behavioural variability in a single bacterium Nature 428 574–8

[15] Levandowsky M, White B S and Schuster F L 1997 Random movements of soil amebas Acta
Protozoologica 4

[16] Asenova E, Lin H-Y, Fu E and Nicolau D V 2016 Optimal fungal space searching algorithms IEEE
Trans. Nanobiosci. 15 613–8
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