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ABSTRACT
In microrheology, the local rheological properties, such as the viscoelasticity of a complex fluid, are inferred from the free or forced motion
of embedded colloidal probe particles. Theoretical machinery developed for forced-probe microrheology of colloidal suspensions focused on
either constant-force (CF) or constant-velocity (CV) probes, while in experiments, neither the force nor the kinematics of the probe is fixed.
More importantly, the constraint of CF or CV introduces a difficulty in the meaningful quantification of the fluctuations of the probe due
to a thermodynamic uncertainty relation. It is known that, for a Brownian particle trapped in a harmonic potential well, the product of the
standard deviations of the trap force and the particle position is dkBT in d dimensions, with kBT being the thermal energy. As a result, if
the force (position) is not allowed to fluctuate, the position (force) fluctuation becomes infinite. To allow the measurement of fluctuations in
theoretical studies, in this work, we consider a microrheology model in which the embedded probe is dragged along by a moving harmonic
potential so that both its position and the trap force are allowed to fluctuate. Starting from the full Smoluchowski equation governing the
dynamics of N hard active Brownian particles, we derive a pair Smoluchowski equation describing the dynamics of the probe as it interacts
with one bath particle by neglecting hydrodynamic interactions among particles in the dilute limit. From this, we determine the mean and
the variance (i.e., fluctuation) of the probe position in terms of the pair probability distribution. We then characterize the behavior of the
system in the limits of both weak and strong trap. By taking appropriate limits, we show that our generalized model can be reduced to the
well-studied CF or CV microrheology models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0108014

I. INTRODUCTION

Rheology is the study of flow and deformation of complex
materials in response to an applied force. Traditional (bulk) rheolog-
ical measurements are performed by shearing a macroscopic sample
of the material confined between two solid surfaces, such as in the
cone-and-plate rheometer. Bulk rheological studies such as shear
rheometry provide a measurement of the macroscopic rheological
behavior of complex materials.

Recently, particle-tracking microrheology has become a stan-
dard tool for studying the mechanical properties of materials on a
much smaller scale.1–4 In contrast to bulk rheology, microrheology
only requires a small sample volume and can be used to quan-
tify spatial heterogeneity. As a result, microrheology is particularly
useful for examining soft biological materials. For example, classi-
cal bulk rheometry cannot be used to probe the microenvironment

inside living cells without disrupting their mechanical structure
while particle-tracking microrheology can be performed.5–9

To aid in the understanding of experimental measurements and
in the prediction of colloidal microrheology, Squires and Brady10

developed a theoretical framework in which a colloidal probe is
pulled through a suspension of neutrally buoyant bath colloids. This
model has been used and generalized to study the microrheology
of passive colloids11–16 and active colloids.17,18 When the exter-
nal pulling force is absent, the probe “collides” with bath particles
as it undergoes Brownian motion—the so-called tracer diffusion
problem. To characterize the nonlinear response, forced microrhe-
ology is considered in which an external force, often larger than
the thermodynamic restoring force, is applied to the probe. Within
forced microrheology, two operating modes—constant-force (CF)
and constant-velocity (CV)—are often considered from a theoreti-
cal perspective. In the CF mode, the probe is driven by a constant
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external force Fext and the velocity of the probe is fluctuating.
Conversely, for a CV probe, the probe velocity U1 is a constant
vector (therefore, the position of the probe is known at all times),
and the force required to maintain such a steady motion must
fluctuate.

To characterize the micro-viscous response of colloidal sus-
pensions, an effective microviscosity ηeff can be defined using the
Stokes drag law. For a spherical probe of radius a in the CF mode,
this is given by Fext

= 6πηeffa⟨U1⟩, where ⟨U1⟩ is the probe veloc-
ity in the direction of Fext averaged over Brownian fluctuations. The
ratio between the effective microviscosity and the solvent viscosity,
ηeff
/η, is the main quantity of interest in colloidal microrheology. For

the CV mode, the average external force is used in the definition of
the effective microviscosity: ⟨Fext

⟩ = 6πηeffaU1. In order to measure
the microviscoelastic response of suspensions, an oscillatory driving
force is considered.11

While theoretical and computational studies using the CF (or
CV) model are successful in quantifying the mean velocity (or mean
force) of a probe driven through colloidal suspensions, the fluctu-
ation from this mean value is largely unexplored. Taking the CV
mode as an example, one could calculate the variance of the mean
force using the probe-distorted microstructure. The question is what
does this variance physically imply? In particular, how does this vari-
ance relate to the fluctuations in the suspension? In an experimental
setting, neither the force nor the velocity of the probe is fixed; they
are both allowed to fluctuate.1,2,13,19

To mimic the experimental realization more closely and moti-
vate later discussions, consider the simple case of an isolated Brow-
nian particle in a harmonic trap that is centered at the origin
(arbitrary). In this physical picture, both the position and the veloc-
ity of the particle are fluctuating. A statistical mechanical description
can be adopted in which one defines the probability density, P(r, t),
of finding the particle at position r relative to the fixed trap at time
t. Conservation of probability dictates that P(r, t) is governed by
the Smoluchowski equation, which reads ∂P/∂t +∇ ⋅ j = 0, where
the flux vector j = PFtrap

/ζ −DT∇P. Here, Ftrap is the trap force and
for a harmonic trap is given by Ftrap

= −kr with k being the spring
constant; ζ is the drag coefficient and DT is the thermal diffusiv-
ity given by the Stokes–Einstein–Sutherland relation, ζDT = kBT,
where kBT is the thermal energy. The mean external force exerted on
the Brownian particle is ⟨Ftrap

⟩ = ∫ FtrapPdr = −k ∫ rPdr = −k⟨r⟩.
Because the trap is harmonic, the mean force is proportional to the
mean displacement with −k being the constant of proportionality.
For a fixed trap, the mean position (therefore, the mean force) is
zero, ⟨r⟩ = 0. The variance of the force, Var (Ftrap

) = k2Var (r). A
straightforward calculation leads to the result

Var (r) =
kBT

k
I, (1)

where I is the identity tensor. Introducing the shorthand ΔFtrap

= Ftrap
− ⟨Ftrap

⟩, we can write the fluctuation relation as

⟨(ΔFtrap
)

2
⟩

1/2
⟨(Δr1)

2
⟩

1/2
= dkBT, (2)

where d is the spatial dimensionality.

Equation (2) is a fundamental result and a few comments on
its implications are in order. First, by harmonically trapping a par-
ticle immersed in a solvent, the product of the standard deviations
of the trap force and the particle position gives precisely the ther-
mal fluctuations of the solvent—dkBT. Second, one can decrease the
uncertainty in the position by increasing the stiffness of the trap
[see Eq. (1)]. However, the trade-off is that the fluctuation in the
force must increase due to (2). Said differently, this constitutes a
thermodynamic uncertainty relation in which one cannot decrease
the fluctuations in both the force and the position simultaneously.
If the fluctuation in the position vanishes (infinitely stiff trap), the
fluctuation in the force blows up.

We note that (2) is observed elsewhere. For example, consider
an ideal Gaussian polymer chain with one end localized in a har-
monic trap. The fluctuations of the trap force and the position from
the trap center satisfy an identical relation.20

We are now in a position to consider the fluctuations in the
microrheology problem. Instead of considering either CF or CV
probes, in a theoretical or computational study, we must allow both
the position of and the force on the probe to fluctuate in order to
have a meaningful quantification of fluctuations. The fluctuations of
both the force on and the position of the probe in an experimen-
tal setting occur naturally: the probe does not follow the “center” of
the trap precisely. Equation (2) also implies that we should consider
the position not the velocity of the probe. In the CF mode, there-
fore, the quantity of interest for fluctuations is the variance of the
position of the probe, which is just the force-induced tracer diffu-
sion problem. That is, the tracer diffusivity under the influence of a
constant force should be considered—not the variance of the veloc-
ity. For the CV mode, the position of the probe is also prescribed,
and the fluctuation in the force is infinite. As a result, in the CV
mode, the computed variance of the force does not have a physical
meaning.

In this paper, to closely mimic the setup of microrheological
experiments, we consider a trapped-particle microrheology model
in which the colloidal probe particle is driven by a translating
harmonic trap. Because biological materials examined by microrhe-
ology such as the microenvironment inside living cells often contain
active “particles,” we model the suspension as an active colloidal
suspension.21–23 Compared to passive suspensions, the study of the
microrheology of active suspensions is more recent.17,18,24–32 The
colloidal particles in an active suspension are able to self-propel,
which can be a model for either biologically active microswim-
mers or synthetic phoretic particles. This active colloidal suspension
model also includes passive (not self-propelled) colloidal systems,
which can be obtained by setting the self-propulsive swim speed to
zero.

This paper is organized as follows. In Sec. II, we present the
general N-particle dynamics from a continuum perspective using
the Smoluchowski equation governing the evolution of the positions
and orientations of N active Brownian particles. In Sec. III, we first
derive the mean and variance (fluctuation) of the probe position rel-
ative to the trap center from the N-particle formulation. Neglecting
hydrodynamic interactions in the dilute limit, we then derive the
pair-level Smoluchowski equation governing the dynamics of the
probe and one bath particle. We discuss the asymptotic behavior of
the system in the limits of both weak and strong traps. We then show
in Sec. IV that our generalized theoretical framework includes the
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well-studied CF and CV microrheology models when appropriate
limits are taken. Finally, we conclude in Sec. V.

II. MECHANICS OF ACTIVE BROWNIAN SUSPENSIONS
Consider a colloidal suspension consisting of N particles dis-

persed in an incompressible Newtonian fluid (solvent) of dynamic
viscosity η. The particles could be active and are subject to fluctu-
ating thermal (Brownian) forces from the solvent. Furthermore, the
inertia of the fluid and the particles are assumed to be negligible. In
this low-Reynolds-number regime, the fluid dynamics is governed
by the linear Stokes equations, and the probability distribution of
the particles is described by the Smoluchowski equation. In general,
all N particles could be active, and we model them as active Brown-
ian particles. The probability distribution for finding the N particles
in positions {xα} and orientations {qα} at a given time t is denoted
as PN(xN , qN , t) where α = 1, . . . , N is the particle label. In the labo-
ratory frame of reference, the N-particle Smoluchowski equation is
given by

∂PN

∂t
+

N

∑
α=1
∇

T
α ⋅ j

T
α +

N

∑
α=1
∇

R
α ⋅ j

R
α = 0, (3)

where ∇T
α = ∂/∂xα is the spatial gradient operator with respect to

the position vector (xα) of particle α in the laboratory frame and
∇

R
α = qα × (∂/∂qα) is the orientational gradient operator of particle

α. The translational and rotational fluxes in Eq. (3) are, respectively,
given by jT

α = UαPN and jR
α = ΩαPN , where Uα (Ωα) is the instan-

taneous linear (angular) velocity of particle labeled α relative to the
laboratory frame. The conservation of probability is

∫
ΓN

PN dΓN
= 1, (4)

where dΓN
=∏

N
α=1 dΓα denotes the volume element of the N-particle

phase space and dΓα = dxαdqα is the volume element of the phase
space of particle α.

In the absence of a background flow, the linear and angular
velocities of any active particle α are given by

⎛
⎜
⎝

Uα −U0
α

Ωα −Ω0
α

⎞
⎟
⎠
=

N

∑
β=1

ℳαβ ⋅
⎛
⎜
⎝

Fe
β + FP

β − kBT∇T
β ln PN

Le
β + LP

β − kBT∇R
β ln PN

⎞
⎟
⎠

+
⎛
⎜
⎝

0

−DR
α∇

R
α ln PN

⎞
⎟
⎠

, (5)

where ℳαβ is the configuration-dependent grand hydrodynamic
mobility tensor coupling the linear and angular velocity of par-
ticle α to the force and torque exerted on particle β. Note that,
for general particle shapes, ℳαβ is a function of the instanta-
neous N-particle configuration—both positions and orientations.
The forces on any particle β include the external force Fe

β, the
interparticle colloidal force FP

β , and the thermal or entropic force
−kBT∇T

β ln PN . Similarly, the torques on any particle β include the
external torque Le

β, the interparticle colloidal torque LP
β and the ther-

mal torque −kBT∇R
β ln PN . The interparticle colloidal forces and

torques are assumed to be conservative. For the case of hard–sphere

interactions, the interparticle forces reduce to no-flux boundary
conditions at any surface of contact between particles.

In Eq. (5), the activity of any particle α is modeled by its undis-
turbed swim linear velocity U0

α and angular velocity Ω0
α regardless

of the presence of any other particles. For the case of simple active
Brownian particles (ABPs) the swim angular velocity is often taken
to be zero, Ω0

α = 0. Furthermore, a biological microswimmer may
“decide” to change its orientation qα by, for example, actuating the
flagella on a different side of its body without disturbing the flow. In
this process, the body of the microswimmer does not turn. For non-
spherical particles, this process means that the swim orientation qα is
usually different from the orientation of the particle shape, in which
case the shape orientation needs to be included as an additional
phase space variable. For spherical particles, only the swim orienta-
tion matters, and no such difficulty is introduced. This reorientation
process of any particle α is independent of the motion of other par-
ticles and is modeled by a simple rotary diffusion with a constant
rotary diffusivity DR

α . The reorientation time is τR
α = 1/DR

α , which
defines the active run or persistence length of an ABP: ℓα = U0

ατR
α .

Because this reorientation process is biological rather than ther-
mal in origin, DR

α is not constrained by the fluctuation–dissipation
theorem and may be inferred from experimental data.

III. MOVING-TRAP MICRORHEOLOGY
In the context of microrheology, the particle with label 1 is

identified as the probe particle. This particle could be a new particle
placed into the suspension or one of the suspension particles tagged
as the probe. Particles labeled 2 −N are referred to as bath parti-
cles. In the following, we consider a suspension of neutrally buoyant,
hard, and active colloidal spheres with identical radii. The probe may
have a different radius than the bath particles. Instead of fixing the
external force Fe

1 or the velocity U1, the probe particle is trapped in
a translating harmonic potential well. We note that the bath parti-
cles are not trapped; they do not experience the trap force. Denoting
the position vector of the center of the potential well as x0(t), we
have dx0/dt = U trap

(t), where U trap
(t) is the prescribed velocity of

the moving trap relative to the laboratory frame. The trap force Fe
1

is assumed to be only a function of the relative position between
the probe and the potential well. All bath particles experience no
external forces or torques. We first consider a general derivation in
which all particles are ABPs and the probe is a tagged ABP in the
suspension.

In the constant-force or constant-velocity mode of microrhe-
ology, the position of the probe does not matter, and the system is
statistically homogeneous. In contrast, the introduction of a moving
trap defines a specific origin in the system and the position of the
probe relative to the trap needs to be considered explicitly. To this
end, we first change to a coordinate system moving with the instan-
taneous trap velocity and measure all particle positions relative to
the trap. This change of variables is written as zα = zα({x}, t) = xα

− ∫
t

0 U trap
(s)ds − x0(0) for any α and t′ = t′({x}, t) = t. Using the

chain rule, we obtain ∂/∂t = −∑N
α=1U trap

⋅ ∂/∂zα + ∂/∂t′ and ∂/∂xα
= ∂/∂zα. The Smoluchowski equation (3) in the new coordinate
system becomes

∂PN

∂t′
+

N

∑
α=1

∂

∂zα
⋅ (jT

α −U trapPN) +
N

∑
α=1
∇

R
α ⋅ j

R
α = 0, (6)
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where jT
α and jR

α remain unchanged. In the context of microrheology,
it is more convenient to measure the positions of all bath parti-
cles relative to that of the probe. We, therefore, introduce another
change of variables such that for the probe, r1 = r1(zN , t′) = z1, and
rα = rα(zN , t′) = zα − z1 for all bath particles (α = 2, . . . , N). In this
coordinate system, the probe position is measured relative to the
trap and the positions of all bath particles are measured relative to
the probe. The change of variables allows us to write ∂/∂z1 = ∂/∂r1
−∑

N
α=2∂/∂rα and ∂/∂zα = ∂/∂rα for α = 2, . . . , N. The Smolu-

chowski equation (6) transforms to

∂PN

∂t
+∇

T
1 ⋅ (j

T
1 −U trapPN) +

N

∑
α=2
∇

T
α ⋅ (j

T
α − jT

1 ) +
N

∑
α=1
∇

R
α ⋅ j

R
α = 0.

(7)

It is understood that, in Eq. (7), we have used t for the time
variable and ∇T

α = ∂/∂rα for any α. Formally, the probability den-
sity in Eq. (7) is the conditional probability to find all particles at
a given configuration provided that the trap is at x0 at time t, i.e.,
PN = PN(rN , qN , t∣x0, t). The translational flux of particle α can be
written as

jT
α = U0

αqαPN +MUF
α1 ⋅ F

e
1PN −

N

∑
β=1
(DUF

αβ −DUF
α1 ) ⋅ ∇

T
β PN

− DUF
α1 ⋅ ∇

T
1 PN −

N

∑
β=1

DUL
αβ ⋅ ∇

R
β PN , (8)

where we have taken U0
α = U0

αqα and used the Stokes–
Einstein–Sutherland relations DUF

αβ = kBTMUF
αβ , DUL

αβ = kBTMUL
αβ . For

all accessible configurations, the inter-particle forces are zero and
the hard–particle interaction between two spheres does not induce
torques. Similarly, the rotary flux of particle α is given by

jR
α =MΩF

α1 ⋅ F
e
1PN −

N

∑
β=1
(DΩF

αβ −DΩF
α1 ) ⋅ ∇

T
β PN

−DΩF
α1 ⋅ ∇

T
1 PN −

N

∑
β=1

DΩL
αβ ⋅ ∇

R
β PN −DR

α∇
R
α PN. (9)

There are no external force or torque on the bath particles,
α = 2 −N, nor a torque on the probe, Le

1 = 0.
The Smoluchowski equation (7) together with the flux expres-

sions (8) and (9) fully specify the N-particle phase space dynamics.
Some comments regarding Eqs. (7)–(9) are in order. First, the above
derivation is an extension of the model considered by Squires and
Brady10 for passive Brownian suspensions. We have generalized
their model to a suspension of ABPs in which one of the par-
ticles is tagged as the probe that is driven by a translating trap.
Realizing that the grand mobility tensor does not depend on the
swim orientation vectors of spherical particles, one can set U0

α = 0
and integrate over the orientations of all particles to obtain the
trapped probe microrheology problem of a passive Brownian sus-
pension. Note that even for passive suspensions, if the probe or the
bath particles are non-spherical, their shape orientations need to be
included in the above formulation. Second, the hydrodynamic inter-
actions between all N-particles are included in the grand mobility
tensor. In particular, this leads to the fact that a gradient in the

orientation space of particle β induces a translational flux of parti-
cle α, and vice versa, due to the hydrodynamic translation-rotation
coupling. Third, due to the dependence on particle orientations,
the phase space of N ABPs has a dimension of 5N: the physi-
cal space has a dimension of 3N and the orientation space has a
dimension of 2N if the orientation of each particle is parameter-
ized by the azimuthal and polar angles of a spherical coordinate
system.

A. Mean and fluctuation of the probe position
The average position or mean displacement of the probe

relative to the trap is defined by

⟨r1⟩(t) = ∫ r1PN dΓN , (10)

where the angle bracket denotes integration against PN over the
configuration space of all particles. Multiplying Eq. (7) by r1 and
integrating over the configuration space ΓN , we obtain

∂⟨r1⟩

∂t
+U trap

= U0
1 ⟨q1⟩ + ⟨M

UF
11 ⋅ F

e
1⟩ − ⟨D

UF
11 ⋅ ∇

T
1 ln PN⟩

−
N

∑
β=1
⟨(DUF

1β −DUF
11 ) ⋅ ∇

T
β ln PN⟩. (11)

Similarly, the mean squared displacement, a second-order tensor, is
governed by

∂⟨r1r1⟩

∂t
+ 2[U trap

⟨r1⟩]
sym
= 2∫ [j

T
1 r1]

sym
dΓN , (12)

where the integral

∫ jT
1 r1dΓN

= U0
1 ⟨q1r1⟩ + ⟨MUF

11 ⋅ F
e
1r1⟩

−
N

∑
β=1
⟨(DUF

1β −DUF
11 ) ⋅ (∇

T
β ln PN)r1⟩

− ⟨DUF
11 ⋅ (∇

T
1 ln PN)r1⟩, (13)

and the superscript “sym” denotes the symmetric part of a tensor
[see Eq. (34)].

The main quantities of interest in the present problem are the
mean displacement ⟨r1⟩ and the fluctuation,

Var (r1) = Cov (r1, r1) = ⟨Δr1Δr1⟩

= ⟨r1r1⟩ − ⟨r1⟩⟨r1⟩, (14)

where we have introduced the shorthand Δr1 = r1 − ⟨r1⟩ and
Var(r1) denotes the variance tensor of r1. For a harmonic trap, the
mean force is related to the mean displacement via

⟨Fe
1⟩ = −k⟨r1⟩, (15)

and similarly the fluctuation in the force is given by

Var (Fe
1) = ⟨ΔFe

1ΔFe
1⟩ = k2

⟨Δr1Δr1⟩. (16)
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B. The pair problem
To proceed analytically, we restrict the analysis to the dilute

limit in which only pair interactions between a bath particle and the
probe are considered. Furthermore, we neglect hydrodynamic inter-
actions between the bath particle and the probe and only consider
hard–sphere interactions. The reduction from the N-particle formu-
lation to the pair problem and the consideration of hydrodynamic
interactions are discussed in Appendix A.

Because the bath particles are indistinguishable, it is con-
venient to define the two-particle probability density function
ρ2(r2, q2, r1, q1, t), which denotes the joint probability density func-
tion of finding the probe at (r1, q1) and any bath particle at (r2, q2)

at time t (see Fig. 1 for a schematic). In terms of P2(r2, q2, r1, q1, t),
which is the joint probability density function of finding the probe at
(r1, q1) and the bath particle labeled 2 (i.e., the first bath particle) at
(r2, q2) at time t, we have ρ2 = (N − 1)P2. Here, the factor of N − 1
comes from removing the labels from the N − 1 bath particles. The
joint probability can be written as

ρ2 = ρ1/1(r2, q2, t∣r1, q1, t)P1(r1, q1, t)

= nbg1/1(r2, q2, t∣r1, q1, t)P1(r1, q1, t), (17)

where nb = (N − 1)/V is the number density of bath particles. For
a passive and CF (or CV) probe, g1/1 becomes independent of the
configuration (r1 and q1) of the probe due to statistical homogeneity;
in this case, the probe distribution P1 can be integrated over, and one
only needs to consider g1/1.10,17,33

The joint probability ρ2 (see Appendix A) is governed by

∂ρ2

∂t
+∇

T
1 ⋅ (j

T
1 −U trapρ2) +∇

T
2 ⋅ (j

T
2 − jT

1 ) +
2

∑
α=1
∇

R
α ⋅ j

R
α = 0, (18)

where

jT
1 = U0

1 q1ρ2 +
1
ζ1

Fe
1ρ2 +DT

1∇
T
2 ρ2 −DT

1∇
T
1 ρ2, (19)

jT
2 = U0

2 q2ρ2 −DT
2∇

T
2 ρ2, (20)

jR
α = −DR

α∇
R
α ρ2. (21)

FIG. 1. Schematic of the pair problem of a spherical probe particle (gray) in a mov-
ing harmonic trap interacting with a spherical bath particle (red). Both the probe
and the bath particles can be active.

At contact, r2 = Rc, no relative flux is allowed,

n2 ⋅ (jT
2 − jT

1 ) = 0. (22)

Far away from the probe, the bath distribution is undisturbed by the
probe and the probe distribution is that in the absence of the bath
particles,

ρ2(r2, q2, r1, q1, t)→
nb

Ωb
P1(r1, q1, t) as ∣r2∣→∞, (23)

where Ωb is the total solid angle of the orientation space of the bath
particle. In 3D, Ωb = 4π. Far away from the trap, the probability
vanishes

ρ2 → 0 as ∣r1∣→∞. (24)

Equation (11) governing the mean displacement becomes

∂⟨r1⟩

∂t
+

1
τk
⟨r1⟩ = −U trap

+U0
1 ⟨q1⟩ +DT

1 ∫ ∇
T
2 ρ2dΓ2, (25)

where dΓ2
= dΓ1dΓ2, and we have defined the viscoelastic

timescale as

τk =
ζ1

k
, (26)

which is set by the balance between the viscous force ζ1∂⟨r1⟩/∂t
and the elastic force k⟨r1⟩. Using the divergence theorem and the
far-field condition (23), the last term on the rhs of (25) can be
written as

DT
1 ∫ ∇

T
2 ρ2dΓ2

= DT
1 ∫ dq2dΓ1∮

Sc

n2ρ2dS2, (27)

where Sc = {r2 : ∣r2∣ = Rc} is the contact surface and n2 is the unit
normal vector of Sc that points out of particle 2.

As shown in Appendix B, the position fluctuation of the probe
is governed by

1
2
∂Var (r1)

∂t
+

1
τk

Var (r1)

= DT
1 I + [U0

1 Cov (q1, r1) +DT
1 ∫ Δr1∇

T
2 ρ2dΓ2

]
sym

, (28)

where the covariance of q1 and r1 satisfies

∂Cov (q1, r1)

∂t
+

1
τ

Cov (q1, r1) = U0
1 Var (q1) +DT

1 ∫ Δq1∇
T
2 ρ2dΓ2.

(29)

In Eq. (29), we have defined the relaxation time τ using

1
τ
=

1
τk
+

d − 1
τR

1
. (30)

Regardless of the presence of the trap or the bath particles, at long
times (t →∞), the net polar and nematic orders of the probe are
given by ⟨q1⟩ = 0 and ⟨q1q1⟩ = I/d, respectively (see Appendix B).
As a result, Var(q1) = I/d at long times.
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It is convenient to consider the rank m polyadic spatial moment
tensor,

Mm(r2, q2, q1, t) = ∫ r1 ⋅ ⋅ ⋅ r1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

m

ρ2dr1 (m = 0, 1, 2, . . .). (31)

Multiplying Eq. (18) by the m-adic product of r1 and integrating over
the physical space of the probe, we obtain

∂Mm

∂t
−m[U0

1 q1Mm−1 −
k
ζ1

Mm + (m − 1)DT
1 Mm−2I

+ DT
1∇

T
2 Mm−1 −U trapMm−1]

sym

+ ∇
T
2 ⋅ (U0

r Mm −DT
r ∇

T
2 Mm +

k
ζ1

Mm+1)

− mDT
1 [∇

T
2 Mm−1]

sym
−

2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α Mm = 0, (32)

where we have defined the relative swim velocity and the relative
diffusivity as, respectively,

U0
r = U0

2 q2 −U0
1 q1, DT

r = DT
1 +DT

2 , (33)

whereas [A]sym denotes the symmetric part of any rank m Cartesian
tensor A such that

[A]sym
i1i2 ⋅ ⋅ ⋅im

=
1

m! ∑σ∈Sm

Aiσ1iσ2 ⋅ ⋅ ⋅iσm , (34)

in which Sm is the set containing the m! permutations of indices.
For m = 2, this reduces to the familiar definition of the symmetric
part of a rank 2 tensor, Asym

= (A + A⊺)/2. For any rank m tensor
A, its symmetric part [A]sym is invariant under a permutation of all
indices. In Eq. (32), Mm for m < 0 is understood to be zero.

At contact, r2 = Rc, the no-flux boundary condition is satisfied,

n2 ⋅ (U0
r Mm −DT

r ∇
T
2 Mm +

k
ζ1

Mm+1) −mDT
1 [n2Mm−1]

sym
= 0.

(35)

The far-field condition for the spatial moment of rank m is

Mm →
nb

Ωb
Φm(q1, t) as r2 →∞, (36)

where

Φm(q1, t) = ∫ r1 ⋅ ⋅ ⋅ r1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

m

P1(r1, q1, t)dr1 (37)

is the rank m spatial moment of the single-particle probability P1 of
the probe. Discussion of the single-particle behavior and the method
to obtain Φm are deferred to Sec. III C.

From (25) and (B1), to obtain the mean and mean-squared
displacements, one only needs to calculate the zeroth and first
spatial moments, respectively. On the other hand, the definitions
of mean and mean-squared displacements allow us to write ⟨r1⟩

= ∫ M1/(N − 1)dq1dΓ2 and ⟨r1r1⟩ = ∫ M2/(N − 1)dq1dΓ2. Because
in obtaining ⟨r1r1⟩ only the integral of M2 is required, it is not neces-
sary to first calculate the distribution of M2 explicitly before carrying
out the integration. Instead, one can show that integrating Eq. (32)
for m = 2 leads to the same equation as (B1). Due to the presence of

the harmonic trap force, the equation for Mm is coupled to Mm+1. To
truncate this infinite set of equations and obtain a finite set of closed
equations, a closure model may be used.

To see the structure of the spatial moments more clearly, we
write out the first few moment equations explicitly using (32). The
zeroth moment, M0 = ∫ ρ2dr1, satisfies the following equation:

∂M0

∂t
+∇

T
2 ⋅ [U

0
r M0 −DT

r ∇
T
2 M0 +

k
ζ1

M1] −
2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α M0 = 0,

(38)

and the normalization ∫ M0dq1dΓ2 = N − 1. In addition to being
advected by the relative velocity U0

r in the physical space of the
bath particle, M0 is forced by the trap via the divergence of the first
moment.

The equation governing the evolution of the first spatial
moment is

∂M1

∂t
− (U0

1 q1M0 −
k
ζ1

M1 +DT
1∇

T
2 M0) +U trapM0

+ ∇
T
2 ⋅ [U

0
r M1 −DT

r ∇
T
2 M1 +

k
ζ1

M2 −DT
1 IM0]

−
2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α M1 = 0. (39)

Similarly, the second moment is governed by

∂M2

∂t
− 2[U0

1 q1M1 −
k
ζ1

M2 +DT
1 M0I +DT

1∇
T
2 M1 −U trapM1]

sym

+ ∇
T
2 ⋅ [U

0
r M2 −DT

r ∇
T
2 M2 +

k
ζ1

M3] − 2DT
1 [∇

T
2 M1]

sym

−
2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α M2 = 0. (40)

C. The probe distribution in the absence
of bath particles

The simplest problem in the above formulation is that of a sin-
gle particle (the probe) interacting with the trap. One can formulate
this single-particle problem by neglecting all bath particles or tak-
ing the limit ϕb = 4πb3nb/3→ 0 in the above N-particle formulation.
The single-particle probability P1(r1, q1, t∣x0, t) of the active probe
satisfies

∂P1

∂t
+∇

T
1 ⋅ (

1
ζ1

Fe
1P1 −DT

1∇P1 −U trapP1 +U0
1 q1P1)

−DR
1∇

R
1 ⋅ ∇

R
1 P1 = 0, (41)

where the conservation of probability dictates that ∫ P1dΓ1 = 1 and
the harmonic trap force Fe

1 = −kr1. We emphasize that, in Eq. (41),
the probe is also considered as an ABP.

The rank m (m = 0, 1, . . .) spatial moment of P1 defined by (37)
satisfies

∂Φm

∂t
−m[U0

1 q1Φm−1 −
k
ζ1

Φm + (m − 1)DT
1 Φm−2I −U trapΦm−1]

sym

−DR
1∇

R
1 ⋅ ∇

R
1 Φm = 0, (42)
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where Φm for m < 0 is defined to be zero. Different from Eq. (32)
in which the moment Mm is coupled to Mm+1, the rank m spatial
moment of P1 only depends on lower order moments, which leads
to a set of closed equations. The solution to the preceding equation
provides the far-field condition for Mm as given by Eq. (36).

The zeroth-order spatial moment Φ0 is the net orientational
distribution, which is unaffected by the trap and is governed by the
orientational diffusion equation,

∂Φ0

∂t
−DR

1∇
R
1 ⋅ ∇

R
1 Φ0 = 0, (43)

where the conservation of P1 gives ∫ Φ0dq1 = 1. At long times,
the solution is simply the uniform distribution, Φ0(q1, t →∞)
= 1/(4π) in 3D.

The above formulation also allows us to consider the mean and
fluctuation of the probe displacement in the absence of bath parti-
cles. Equation (11) or (25) in the absence of bath particles reduces
to

∂⟨r1⟩

∂t
+

1
τk
⟨r1⟩ = −U trap

+U0
1 ⟨q1⟩, (44)

where for the single particle, ⟨r1⟩ = ∫ r1P1dΓ1 = ∫ Φ1dq1. Similarly,
Eq. (12) or (B1) for the single particle becomes

1
2
∂⟨r1r1⟩

∂t
+

1
τk
⟨r1r1⟩ = DT

1 I + [U0
1⟨q1r1⟩ −U trap

⟨r1⟩]
sym

. (45)

It can be seen from Eqs. (44) and (45) that, in order to calculate
the mean and mean-squared displacements, one needs to obtain the
net polar order ⟨q1⟩ and the covariance of the position and orien-
tation Cov(q1, r1). The governing equation for Cov(q1, r1) follows
from (29) and is given by

∂Cov (q1, r1)

∂t
+

1
τ

Cov (q1, r1) = U0
1 Var (q1), (46)

which depends on the net nematic order ⟨q1q1⟩.
At steady state, it is shown that ⟨q1⟩ = 0 and ⟨q1q1⟩ = I/d,

where d = 2, 3 is the dimensionality of the physical space. This allows
us to obtain

⟨r1⟩ = −
ζ1U trap

k
, (47)

Cov (q1, r1) =
U0

1

dk/ζ1 + d(d − 1)DR
1

I, (48)

⟨r1r1⟩ =
ζ2

1

k2 U trapU trap
+

ζ1DT
1

k
I +

ζ1Dswim
1

k
1

1 + kτR
1

ζ1

1
d−1

I, (49)

where Dswim
1 = (U0

1)
2τR

1 /[d(d − 1)] is the swim diffusivity of a freely
swimming ABP. The average position of the ABP relative to the trap
is given by the balance between the average trap force k⟨r1⟩ and the
viscous drag ζ1U trap. If the trap is strong, k→∞, the ABP is tightly
confined and pushing against the trap “boundary,” which has been
observed in experiments.34 On the other hand, for k→ 0, the average
position of the ABP becomes unbounded. Solving the steady state

first and then taking the limit k→ 0 in (47) is singular because, in
the absence of the trap (k = 0), the average position is unbounded
and, at long times, the particle motion is diffusive. For k ≡ 0, we are
simply measuring the motion of an ABP in a frame of reference mov-
ing with velocity U trap relative to the laboratory frame, which gives
d⟨r1⟩/dt = −U trap.

Takatori et al.34 studied the transient and long-time dynamics
of self-propelled Janus particles in a fixed acoustic trap. They showed
that the experimentally measured density distribution of Janus parti-
cles follows closely the theoretical predictions using a harmonic trap.
Equation (49) in the absence of U trap agrees with that obtained by
Takatori et al.34

The fluctuation relation is given by

⟨(ΔFe
1)

2
⟩

1/2
⟨(Δr1)

2
⟩

1/2
= d[kBT +

ksTs

1 + τR
1 /[(d − 1)τk]

], (50)

where the thermal energy kBT = ζ1DT
1 and analogously an active

energy scale ksTs has been defined such that ksTs = ζ1Dswim
1 .35 In

Eq. (50), the fluctuation consists of the thermal (passive) energy
dkBT and an active energy contribution. This active energy is dif-
ferent from ksTs due to the presence of the harmonic trap, which
introduces an orientational decorrelation timescale τk in addi-
tion to the reorientation time τR

1 of the ABP. For a weak trap,
τR

1 /τk ≪ 1, the decorrelation occurs on the timescale of τR
1 , and the

active contribution scales as ζ1(U0
1)

2τR
1 . As a result, the fluctua-

tion ⟨(ΔFe
1)

2
⟩

1/2
⟨(Δr1)

2
⟩

1/2
→ d(kBT + ksTs) as τR

1 /τk → 0. This is
often referred to as rule no. 1 of active matter—when all length
scales are large compared to the run length ℓ1, one can replace
kBT with kBT + ksTs. As another example, consider the sedimenta-
tion of active colloids under gravity. At a steady state, the number
density follows the Boltzmann distribution but with kBT + ksTs in
place of kBT.36

When τR
1 /τk ≫ 1, the relevant timescale is τk, and the active

contribution scales as ζ1(U0
1)

2τk. In this limit, the ABP is pushing
against the edge of the potential well and the fluctuation comes from

passive Brownian motion alone, ⟨(ΔFe
1)

2
⟩

1/2
⟨(Δr1)

2
⟩

1/2
→ dkBT as

τR
1 /τk →∞.

Regardless of the trap strength, the product of the square
root of the fluctuations in the force and the position is always
bounded. For a strong trap, the position fluctuation vanishes,
⟨Δr1Δr1⟩ = O(1/k)→ 0, but the force fluctuation blows up linearly
since ⟨ΔFe

1ΔFe
1⟩ = O(k)→∞ as k→∞. Conversely, the position

fluctuation grows unboundedly while the force fluctuation vanishes
as k→ 0.

In the weak trap limit, Eq. (50) can be equivalently written as

k
ζ1
⟨Δr1Δr1⟩ =

⟨Δr1Δr1⟩

τk
→ Deff

1 as
τR

1

τk
→ 0, (51)

where Deff
1 = DT

1 I +Dswim
1 I is the long-time effective diffusivity of the

ABP in the absence of the trap (see Appendix C for the asymptotic
analysis). This relation implies the equivalence of the position fluctu-
ation divided by τk in the limit of vanishing harmonic trapping force
and the effective diffusion of a free ABP. In other words, one could
calculate the position fluctuation in a trap and then take the limit
of ⟨Δr1Δr1⟩/τk as k→ 0 to obtain the long-time diffusivity that the
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particle would have in the absence of the trap, or vice versa. Because
the trap is weak, the ABP is able to explore space via both thermal
fluctuation and its undisturbed active run-and-reorientation; both
processes contribute to the position fluctuation. In the presence of
bath particles, this equivalence still holds in which Deff

1 is the dif-
fusivity of the probe affected by collisions with bath particles (i.e.,
tracer diffusion).

D. A weak trap
For a weak trap, ε = τR

1 /τk = kτR
1 /ζ1 ≪ 1, the probe is allowed

to explore and reorient freely before reaching the “boundary” of
the potential well. The viscoelastic timescale τk is well separated
from the reorientation timescale τR

1 . In the intermediate timescale
characterized by t/τR

1 ≫ 1 and t/τk ≪ 1, the probe has explored the
suspension but has not reached the boundary of the potential; we
expect a diffusive behavior of the probe. At times much longer than
the viscoelastic timescale (t/τk ≫ 1), the variance of the probe posi-
tion becomes bounded due to the trapping force. Therefore, the
motion of the probe exhibits a transition from diffusive to bounded
behavior.

The separation of the two timescales allows us to consider a
multiple-scale analysis. By defining the fast variable t1 = t and the
slow variable t2 = εt, we have ∂/∂t = ∂/∂t1 + ε∂/∂t2. Regular per-
turbation expansions of the pair probability distribution and its
spatial moments in terms of ε are written as

ρ2 = ρ(0)2 + ερ(1)2 + ⋅ ⋅ ⋅ , (52)

Mm =M(0)m + εM(0)m + ⋅ ⋅ ⋅ , (53)

where M(k)m is the rank m spatial moment of ρ(k)2 .
At O(1), the zeroth moment satisfies

∂M(0)0
∂t1

+∇
T
2 ⋅ (U

0
r M(0)0 −DT

r ∇
T
2 M(0)0 ) −

2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α M(0)0 = 0,

(54)

n2 ⋅ (U0
r M(0)0 −DT

r ∇
T
2 M(0)0 ) = 0, r2 ∈ Sc. (55)

Similarly, the first moment at this order is given by

∂M(0)1
∂t1

− (U0
1 q1M(0)0 +DT

1∇
T
2 M(0)0 ) +U trapM(0)0

+∇
T
2 ⋅ (U

0
r M(0)1 −DT

r ∇
T
2 M(0)1 −DT

1 IM(0)0 )

−
2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α M(0)1 = 0, (56)

n2 ⋅ (U0
r M(0)1 −DT

r ∇
T
2 M(0)1 −DT

1 IM(0)0 ) = 0, r2 ∈ Sc. (57)

Expanding the covariances similarly, e.g.,

Var (r1) = Var (0)(r1) + ε Var (1)(r1) + ⋅ ⋅ ⋅ , (58)

we obtain at O(1),

1
2
∂Var (0)(r1)

∂t1
= DT

1 I + [U0
1 Cov (0)(q1, r1)

+ DT
1 ∫ ∇

T
2 ρ(0)2 Δr1dΓ2

]
sym

, (59)

∂Cov (0)(q1, r1)

∂t1
+

d − 1
τR

1
Cov (0)(q1, r1)

= U0
1 Var (q1) +DT

1 ∫ Δq1∇
T
2 ρ(0)2 dΓ2. (60)

Note that Var(q1) is not affected by the presence of the trap (see
Appendix B) and, therefore, only has the O(1) term in the small-ε
expansion.

Equations (54)–(60) govern the dynamics of a probe in a bath of
active particles in the absence of the trapping force [the presence of
U trap in (56) is only due to the fact that we are in a frame of reference
moving with U trap relative to the laboratory frame]. This problem is
the so-called tracer—an active one—diffusion in an active Brownian
suspension. Even in the absence of the trap, the correlation between
q1 and r1 has a steady-state (time-independent) solution due to the
presence of the decorrelation time τR

1 in Eq. (60). Dropping the time
derivative in (60) at steady state, we obtain

Cov (0)(q1, r1) =
ℓ1

d(d − 1)
I +

τR
1

d − 1
DT

1 ∫ Δq1∇
T
2 ρ(0)2 dΓ2, (61)

where it is understood that the steady-state distribution of ρ(0)2 is
used, and ℓ1 = U0

1 τR
1 is the run length of the active probe. Therefore,

Eq. (59) is written as

Deff
1 = (D

T
1 +Dswim

1 )I +DT
1 [∫ (

ℓ1

d − 1
Δq1 + Δr1)∇

T
2 ρ(0)2 dΓ2

]

sym
,

(62)

where Deff
1 = ∂Cov (0)(r1, r1)/(2∂t1) is the long-time diffusivity of

the probe in the absence of the trapping force. As expected, one
could obtain the same result by setting Fe

1 = 0 from the outset (see
Sec. IV B). This is done in the work of Burkholder and Brady29 but
with the free tracer particle being passive.

So long as the trapping force is not identically zero, the probe
will eventually reach the boundary of the trap. This confinement
happens at very large distances from the trap (or at long times if the
probe is started near the trap center).

E. A strong trap
For a strong trap, the viscoelastic time scale τk = ζ1/k is much

smaller than other timescales (e.g., the reorientation time) of the
problem. Due to the strong trapping force, both the mean and
the variance of the probe have a steady-state solution that is
time-independent.

The position fluctuation, governed by Eq. (28), becomes at
steady state,

k
ζ1

Var (r1) = DT
1 I + [U0

1 Cov (q1, r1) +DT
1 ∫ Δr1∇

T
2 ρ2dΓ2

]
sym

.

(63)
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Similarly, Cov(q1, r1) defined in (29) is given by

k
ζ1

Cov (q1, r1) =
1
d

U0
1 I +DT

1 ∫ Δq1∇
T
2 ρ2dΓ2. (64)

Because the last term in the preceding equation is finite as k→∞,
Cov(q1, r1) is small and on the order of 1/k.

On the other hand, for a strong trap, the relative deviation of the
probe position from the average position is small, Δ∣r1∣/⟨∣r1∣⟩≪ 1,
which leads to

M1(r2, q2, t) = ∫ r1ρ2dr1 = ⟨r1⟩M0 + ∫ Δr1ρ2dr1

= ⟨r1⟩M0 +O(Δ∣r1∣/⟨∣r1∣⟩), (65)

where the decomposition r1 = ⟨r1⟩ + Δr1 is used. Using the first line
of (65), we have

∫ ∇
T
2 ρ2Δr1dΓ2

= ∫ ∇
T
2 [M1 − ⟨r1⟩M0]dq1dΓ2, (66)

which is negligible due to the second line of (65). Taken together, we
conclude that the last two terms on the rhs of (63) are subdominant.
To leading-order, the fluctuation in the strong-trap limit is given by

kVar (r1) = ζ1DT
1 I = kBTI, (67)

regardless of the presence of the bath particles. Therefore, in this
limit, we have

⟨(ΔFe
1)

2
⟩

1/2
⟨(Δr1)

2
⟩

1/2
= dkBT. (68)

IV. CONSTANT-FORCE AND CONSTANT-VELOCITY
MICRORHEOLOGY

In this section, we show that the trapped-particle microrheol-
ogy problem can be reduced to either the CV or CF problem when
appropriate limits are taken.

A. Constant-force microrheology
To recover the constant-force microrheology problem, instead

of a harmonic trapping force, we apply a constant force to the probe
particle, Fe

1 = const, and set the trap velocity U trap
= 0. In this mode

of operation, the main quantity of interest is the average veloc-
ity ⟨U1⟩ of the probe in response to the constant external driving
force. By definition, ⟨U1⟩ = ∂⟨r1⟩/∂t, which can be obtained by
considering the rhs of Eq. (11).

Because the trap is absent, the position r1 defines an arbitrary
origin in the laboratory frame of reference and the system is statisti-
cally homogeneous.10 As a result, the conditional probability PN−1/1
defined by

PN = PN−1/1(r
N−1, qN−1, t∣r1, q1, t)P1(r1, q1, t) (69)

is not a function of r1. (Note that, in general, PN−1/1 can be a function
of q1.) The third term on the rhs of Eq. (11) becomes

−⟨DUF
11 ⋅ ∇

T
1 ln PN⟩ = −∫ dΓN−1PN−1/1DUF

11 ⋅ ∫ dΓ1∇
T
1 P1 = 0,

(70)

where we have used the divergence theorem and the fact that P1
vanishes at infinity.

Further manipulations allow us to write Eq. (11) as

⟨U1⟩ = U0
1 ⟨q1⟩ + ⟨M

UF
11 ⟩ ⋅ F

e
1

−
N

∑
β=1
∫ dΓ1P1 ∫ dΓN−1

(DUF
1β −DUF

11 ) ⋅ ∇
T
β PN−1/1. (71)

If all N particles (including both the probe and the bath parti-
cles) are passive, Eq. (71) upon integration over Γ1 reduces to the
average velocity relation originally obtained by Squires and Brady10

[Eq. (A4)] for passive colloids.
Neglecting hydrodynamic interactions in the dilute limit, the

average velocity becomes

⟨U1⟩ =
1
ζ1

Fe
1 +U0

1 ⟨q1⟩ +DT
1 ∫ ∇

T
2 ρ2dΓ2. (72)

Recalling that M0 = ∫ ρ2dr1, the last term in (72) can be calculated
so long as M0 can be obtained. We note that, at long times, ⟨q1⟩ = 0.
If the probe is under the influence of external orienting fields, the net
polar order ⟨q1⟩ becomes non-zero.37

In the CF mode of microrheology, the equation governing the
spatial moment Mm is similar to (32) and can be shown to be

∂Mm

∂t
−m[U0

1 q1Mm−1 +
1
ζ1

Fe
1Mm−1

+ (m − 1)DT
1 Mm−2I +DT

1∇
T
2 Mm−1]

sym

+ ∇
T
2 ⋅ (U0

r Mm −DT
r ∇

T
2 Mm −

1
ζ1

Fe
1Mm)

− mDT
1 [∇

T
2 Mm−1]

sym
−

2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α Mm = 0. (73)

Here, because the external force is constant, the moment equation at
rank m only depends on moments of lower ranks, and the system up
to any rank is a closed set of equations.

At contact, r2 = Rc, we have the no-flux boundary condition,

n2 ⋅ (U0
r Mm −DT

r ∇
T
2 Mm −

1
ζ1

Fe
1Mm) −mDT

1 [n2Mm−1]
sym
= 0.

(74)

The far-field condition as r2 →∞ is unchanged and given by
Eq. (36), where Φm for constant force satisfies

∂Φm

∂t
−m[U0

1 q1Φm−1 +
Fe

1

ζ1
Φm−1 + (m − 1)DT

1 Φm−2I]
sym

−DR
1∇

R
1 ⋅ ∇

R
1 Φm = 0. (75)

To find the average velocity given in Eq. (72), one needs to consider
Eqs. (73) and (75) for m = 0.

We note that, in the above general formulation, both the probe
particle and the bath particle are ABPs. By setting U0

1 , U0
2 = 0 and

integrating out the orientational degrees of freedom of the probe and
the bath particle, we obtain the CF microrheology problem of a pas-
sive Brownian probe in a passive Brownian suspension, which has
been considered by Squires and Brady.10 On the other hand, the CF
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microrheology of a passive Brownian probe in an active Brownian
suspension (U0

1 = 0, U0
2 ≠ 0) is studied by Burkholder and Brady.17

Taking m = 0 in Eq. (73) in the absence of the external force
(Fe

1 = 0), we obtain

∂M0

∂t
+∇

T
2 ⋅ (U

0
r M0 −DT

r ∇
T
2 M0) −

2

∑
α=1

DR
α∇

R
α ⋅ ∇

R
α M0 = 0. (76)

Treating the probe as one of the suspension particles, this zeroth spa-
tial moment is the pair-correlation function of an active Brownian
suspension (subject to proper normalization) in the dilute limit by
neglecting all higher order correlations. Equation (76) governing the
pair-correlation at a steady state has been studied.38,39

B. Force-induced tracer diffusion
In the constant-force mode of microrheology, it is also of

importance to consider the force-induced diffusion of the probe par-
ticle. In this context, the probe is often referred to as the tracer,
i.e., force-induced tracer diffusion. If no external force is applied,
Fe

1 = 0, the problem is simply called tracer diffusion. The long-time
diffusivity of the tracer in the presence of bath particles can be
written as

Deff
1 = lim

t→∞

1
2

d
dt

Var (r1) = lim
t→∞

1
2
[
∂

∂t
⟨r1r1⟩ − ⟨U1⟩⟨r1⟩ − ⟨r1⟩⟨U1⟩],

(77)

where the covariance tensor of r1 is governed by

1
2

d
dt

Var (r1) = DT
1 I +U0

1[Cov (q1, r1)]
sym

+ DT
1 [∫ Δr1∇

T
2 ρ2dΓ2

]
sym

, (78)

and the covariance of q1 and r1 satisfies

d
dt

Cov (q1, r1) +
d − 1

τR
1

Cov (q1, r1) = U0
1 Var (q1)

+ DT
1 ∫ Δq1∇

T
2 ρ2dΓ2. (79)

At long times, we then obtain the diffusivity as

Deff
1 = (D

T
1 +Dswim

1 )I +DT
1 [∫ (

ℓ1

d − 1
Δq1 + Δr1)∇

T
2 ρ2dΓ2

]

sym
.

(80)

In (80), the first bracketed term on the rhs is the diffusivity of a sin-
gle ABP in free space and the remaining terms are the additional
contributions due to the excluded-volume interaction with the bath
particles. As alluded to earlier, Eq. (80) is identical to Eq. (62), which
is obtained in the weak-trap limit. We note that, in (80), there is a
constant external force while the diffusivity obtained in (62) is for a
free tracer, i.e., force-induced vs free tracer diffusion. It is clear that,
if the force is absent, the diffusivities obtained from (62) and (80) are
identical.

Using the divergence theorem, we can relate the integrals on
the rhs of (80) to the zeroth and first spatial moments,

∫ Δq1∇
T
2 ρ2dΓ2

= ∫ Δq1dq1dq2∮Sc

n2M0dS2, (81)

∫ Δr1∇
T
2 ρ2dΓ2

= ∫ Δq1dq1dq2∮Sc

(M1 − ⟨r1⟩M0)n2dS2, (82)

where ⟨r1⟩ = ∫ M1/(N − 1)dq1dΓ2. Therefore, one only needs to
solve for M0 and M1 in Eq. (73) in order to calculate the
diffusivity.

The above formulation for the forced-induced diffusion of an
active tracer in an active suspension is a direct extension of the gen-
eralized Taylor dispersion theory (GTDT). In particular, we have
used the statistical moment method of Frankel and Brenner.40 An
equivalent approach is to derive the mean velocity and the diffusivity
by first transforming the unbounded coordinate r1 into the Fourier
space and consider a small wave-number expansion.14,17,29

By setting U0
1 , U0

2 = 0 and integrating over the orientational
degrees of freedom of both the probe and the bath particles, we
recover the equations governing the force-induced diffusion of a
passive probe in a passive suspension.14 To recover the problem of
a passive free tracer in an active suspension studied by Burkholder
and Brady,29 one can set Fe

1 = 0, U0
1 = 0 and integrate over the

orientational degrees of freedom of the probe.

C. Constant-velocity microrheology
To obtain the equations for the CV microrheology problem,

we first consider the probe to have deterministic dynamics with
U0

1 = 0, DT
1 = 0 and DR

1 = 0. Equation (25) at steady-state then leads
to k⟨r1⟩/ζ1 = −U trap. Furthermore, we consider the limit of a strong
trap in which case the probe tightly follows the trap velocity. In this
limit, the probe velocity is the trap velocity to leading-order and we
then achieve a CV probe.

To see this, we first decompose the position of the probe via
r1 = ⟨r1⟩ + Δr1. In the strong trap limit, the deviation of the probe
from the mean position is small, Δ∣r1∣/⟨∣r1∣⟩≪ 1.

To leading-order, (65) allows us to obtain the first spatial
moment as kM1/ζ1 = −U trapM0 (this relation can also be viewed as
a closure for the spatial moments). The substitution of this relation
into (38) leads to

∂M0

∂t
+∇

T
2 ⋅ (U

0
2 q2M0 −DT

1∇
T
2 M0 −U trapM0)

−DR
2∇

R
2 ⋅ ∇

R
2 M0 = 0. (83)

Similarly, the no-flux condition at contact (r2 ∈ Sc) is

n2 ⋅ (U0
2 q2M0 −DT

1∇
T
2 M0 −U trapM0) = 0. (84)

Equation (83) describes the distribution of the bath particle mea-
sured in a frame of reference that is co-moving with U trap. Realizing
that the probe velocity is the same as the “trap,” Uprobe

= U trap,
this is the CV microrheology of an active Brownian suspension.
We note that, in (83) [cf. (38)], the relative velocity is U0

2 q2 −U trap

and the relative diffusivity is DT
1 because the probe has prescribed

kinematics.
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The CV microrheology of an active Brownian suspension gov-
erned by (83) and (84) has been studied by Burkholder and Brady18

and Peng and Brady.31 To recover the CV microrheology of a passive
Brownian suspension considered by Squires and Brady,10 one only
needs to set U0

2 = 0 and integrate over the orientational degrees of
freedom of the bath ABP.

V. CONCLUSIONS
In microrheology experiments, the probe particle does not fol-

low the position or motion of the trap exactly. As a result, the
measured trajectory and/or force on the probe contain fluctua-
tions due to the interaction of the probe with the solvent and the
bath particles. In contrast, classical theoretical and computational
studies often employ microrheology models in which either the
applied external (e.g., trap) force or the probe velocity is fixed.
This artificial constraint of either CF or CV results in a simple
model that often allows analytical analyses and straightforward
numerical computations. For the purpose of quantifying the micro-
viscous response of suspensions, the CF or CV models are often
sufficient. The challenge arises if one wishes to consider the fluc-
tuations of the probe as a result of its interactions with the bath
particles and the solvent. While fluctuations are naturally con-
tained in experimental measurements, the constraints of CF or
CV prevent the quantification of such fluctuations in theoretical
studies.

In this paper, we have considered the trapped-particle
microrheology of an active colloidal suspension consisting of active
Brownian spheres from a Smoluchowski perspective. To allow the
meaningful measurement of fluctuations in theoretical or com-
putational studies, we removed the constraint of CF or CV by
considering the dynamics of a harmonically trapped particle as the
probe.

More specifically, we have demonstrated that, in order to pro-
vide a meaningful quantification of the fluctuations in the probe
position, one must allow both the position of and the external force
on the probe to fluctuate. To achieve this, we developed a gen-
eralized microrheology model in which the probe is driven by a
translating harmonic trap. We explicitly formulated the equations
governing the dynamics of the probe–bath pair in the dilute limit
and showed that both the mean position and the fluctuation of
the probe position can be given in terms of the joint probability
distribution.

In the weak-trap limit, we showed that, at an intermediate time,
the probe exhibits a diffusive behavior in which the diffusivity is the
effective diffusivity of a free tracer immersed in the suspension. At
this timescale, the probe has explored the suspension but has not
reached the boundary of the trap. In other words, it is equivalent to
the free-tracer diffusion problem. For a strong trap, the fluctuations
from the activity of the bath particles or from the collisions between
the probe and the bath particles are suppressed due to the strong
confinement of the trap. In this limit, the fluctuation of the probe
originates from the thermal energy alone regardless of the presence
(or activity) of the bath particles.

For finite trap strengths, analytical analysis of the Smolu-
chowski equation is not accessible. In this regime, the probe can only
explore a finite extent of the suspension because the trap constitutes
a “boundary” for the probe as it interacts with the bath particles.

For a single active particle in a harmonic potential, we have shown
that the fluctuation energy [see Eq. (50)] is systematically lowered
as a function of the trap strength. For a strong trap, the active con-
tribution vanishes entirely and only the thermal energy remains. It
is very interesting to examine this transition of the fluctuation as a
function of the trap strength for suspensions, that is, in the presence
of bath particles. To this end, it is more convenient to consider a
dynamic simulation approach using Brownian dynamics (BD)41,42

instead of solving the high-dimensional Smoluchowski equation.
Compared to previous BD studies of microrheology using either CF
or CV probes, one only needs to modify the equation of motion of
the probe to include the harmonic trap. In BD simulations, one can
easily quantify the fluctuations as a function of the trap strength; this
calculation and analysis are left for future work. To include hydro-
dynamic interactions among particles, Stokesian dynamics can be
used.43

To conclude, we have developed a theoretical framework that
allows the calculation of fluctuations in either a dynamic simula-
tion or a continuum analysis of the derived Smoluchowski equations
governing the trapped-particle microrheology of active Brownian
suspensions. While our equations are derived based on ABPs, we
expect the general qualitative behavior to hold for run-and-tumble
(RTP) particles. In contrast to ABPs that reorient due to continu-
ous Brownian motion, RTPs perform discrete tumbling events. At
long times in certain situations, the behaviors of RTPs and ABPs
are equivalent because they both perform an active random walk.44

An interesting and open question is what is the fluctuation behav-
ior of the probe in a general active suspension or medium? One
interesting model system to probe such a question is a suspension
consisting of active Lévy swimmers.45 A Lévy swimmer exhibits
run-and-tumble motion but with a power-law distribution of run-
times rather than the Markovian reorientation process of normal
RTPs.
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APPENDIX A: DERIVATION OF THE PAIR PROBLEM

We integrate Eq. (7) over the relative positions and the
orientations of the bath particles labeled from 3 to N to obtain

∂P2

∂t
+∇

T
1 ⋅ ∫ (j

T
1 −U trapPN)dΓN−2

+∇
T
2 ⋅ ∫ (j

T
2 − jT

1 )dΓN−2
+

2

∑
α=1
∇

R
α ⋅ ∫ jR

α dΓN−2
= 0, (A1)

where dΓN−2 is a shorthand for ∏N
β=3dΓβ and P2 = ∫ PN dΓN−2. In

deriving the preceding equation, the divergence theorem and the no-
flux condition are used to eliminate the terms ∫ ∇

T
β ⋅ (j

T
β − jT

1 )dΓN−2

for β = 3, . . . , N. In addition, the relation ∫ ∇
R
α ⋅ jR

α dqα = 0 is
used.

To proceed further, we define the conditional probability of
finding the remaining N − 2 particles, P(N−2)/2, given the configura-
tion of the probe and the first bath particle,

PN(rN , qN , t) = P(N−2)/2(r
N−2, qN−2, t∣r2, q2, r1, q1, t )

× P2(r2, q2, r1, q1, t). (A2)

Note that the conditional probability is conserved, ∫ PN−2/2dΓN−2

= 1. In Eq. (A1), for α = 1 or 2, we have

∫ jT
α dΓN−2

= U0
αqαP2 + ⟨MUF

α1 ⟩(N−2)/2
⋅ Fe

1P2 − ⟨DUF
α2 −DUF

α1 ⟩(N−2)/2
⋅ ∇

T
2 P2 −

N

∑
β=2
⟨(DUF

αβ −DUF
α1 ) ⋅ ∇

T
β ln P(N−2)/2⟩

(N−2)/2
P2

− ⟨DUF
α1 ⋅ ∇

T
1 ln P(N−2)/2⟩

(N−2)/2
P2 − ⟨DUF

α1 ⟩(N−2)/2
⋅ ∇

T
1 P2 −

2

∑
β=1
⟨DUL

αβ ⋅ ∇
R
β ln P(N−2)/2⟩(N−2)/2

P2 −
2

∑
β=1
⟨DUL

αβ ⟩(N−2)/2
⋅ ∇

R
β P2

(A3)

and

∫ jR
α dΓN−2

= ⟨MΩF
α1 ⟩

(N−2)/2
⋅ Fe

1P2 − ⟨DΩF
α2 −DΩF

α1 ⟩
(N−2)/2

⋅ ∇
T
2 P2 −

N

∑
β=2
⟨(DΩF

αβ −DΩF
α1 ) ⋅ ∇

T
β ln P(N−2)/2⟩

(N−2)/2
P2

− ⟨DΩF
α1 ⋅ ∇

T
1 ln P(N−2)/2⟩

(N−2)/2
P2 − ⟨DΩF

α1 ⟩
(N−2)/2

⋅ ∇
T
1 P2 −

2

∑
β=1
⟨DΩL

αβ ⋅ ∇
R
β ln P(N−2)/2⟩

(N−2)/2
P2

−
2

∑
β=1
⟨DΩL

αβ ⟩
(N−2)/2

⋅ ∇
R
β P2 −DR

α∇
R
α P2. (A4)

In Eqs. (A3) and (A4), we have defined ⟨(⋅)⟩(N−2)/2
= ∫ (⋅)P(N−2)/2dΓN−2 and used the fact that the mobility tensors are
independent of qN for spheres, i.e., Mαβ =Mαβ(r2, . . . , rN).

In the dilute limit, neglecting the terms involving the gradients
of ln P(N−2)/2 and using the pair mobility tensor in the absence of
other particles in place of ⟨M⟩(N−2)/2, we obtain

∂P2

∂t
+∇

T
1 ⋅ (j

T
1 −U trapP2) +∇

T
2 ⋅ (j

T
2 − jT

1 ) +
2

∑
α=1
∇

R
α ⋅ j

R
α = 0, (A5)

where using the same symbols as before

jT
α = U0

αqαP2 +MUF
α1 ⋅ F

e
1P2 − (DUF

α2 −DUF
α1 ) ⋅ ∇

T
2 P2

−DUF
α1 ⋅ ∇

T
1 P2 −

2

∑
β=1

DUL
αβ ⋅ ∇

R
β P2, (A6)

jR
α =MΩF

α1 ⋅ F
e
1P2 − (DΩF

α2 −DΩF
α1 ) ⋅ ∇

T
2 P2 −DΩF

α1 ⋅ ∇
T
1 P2

−
2

∑
β=1

DΩL
αβ ⋅ ∇

R
β P2 −DR

α∇
R
α P2. (A7)

In the absence of hydrodynamic interactions, we have
MUF

αβ = Iδαβ/ζT
α , MΩL

αβ = Iδαβ/ζR
α , and MUL

αβ , MΩF
αβ = 0, where δαβ is the

Kronecker delta. The conditional probability of finding a bath par-
ticle, ρ1/1(r2, q2, t∣r1, q1, t), can be related to P2 via the relation
ρ1/1 = (N − 1)P1/1, where P1/1 is defined by P2 = P1/1P1. The factor of
N − 1 comes from the process of removing the “labels” of the N − 1
bath particles. From this, the joint probability density of finding a
bath particle at r2, q2 and the probe at r1, q1 is defined as ρ2 = ρ1/1P1.
Furthermore, we can define a dimensionless conditional distribution
function g1/1 such that

ρ2 = ρ1/1P1 = nbg1/1P1, (A8)

where nb = (N − 1)/V is the number density of bath particles.
In the absence of hydrodynamic interactions, Eqs. (A5)–(A7)

reduce to Eqs. (18)–(21) given in the text.

APPENDIX B: DERIVATION OF THE VARIANCE
RELATIONS

For the pair problem, Eq. (12) governing the mean-squared
displacement reduces to

J. Chem. Phys. 157, 104119 (2022); doi: 10.1063/5.0108014 157, 104119-12

Published under an exclusive license by AIP Publishing

 30 O
ctober 2023 17:54:26

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

1
2
∂⟨r1r1⟩

∂t
+

1
τk
⟨r1r1⟩ = DT

1 I + [U0
1⟨q1r1⟩ −U trap

⟨r1⟩]
sym

+DT
1 [∫ ∇

T
2 ρ2r1dΓ2

]
sym

. (B1)

Using Eqs. (25) and (B1), one can show that the position
fluctuation of the probe is governed by

1
2
∂Var (r1)

∂t
+

1
τk

Var (r1) = DT
1 I +U0

1[Cov (q1, r1)]
sym

+DT
1 [∫ ∇

T
2 ρ2Δr1dΓ2

]
sym

, (B2)

where Cov(q1, r1) = ⟨q1r1⟩ − ⟨q1⟩⟨r1⟩ and recall that Δr1 = r1
− ⟨r1⟩. To calculate the covariance of q1 and r1 appearing in Eq. (B2),
we need ⟨q1r1⟩, ⟨q1⟩, and ⟨r1⟩.

The net polar order of the probe satisfies

∂⟨q1⟩

∂t
+

d − 1
τR

1
⟨q1⟩ = 0, (B3)

where d(= 2, 3) is the dimensionality of the problem. It can be seen
that the net polar order of the probe is not affected by the trap or the
bath particles. The full solution to (B3) is readily obtained as

⟨q1⟩(t) = exp[−(d − 1)t/τR
1 ]⟨q1⟩(0), (B4)

where any initial net polar order ⟨q1⟩(0) decays away exponentially
due to the rotary diffusion.

The average of q1r1 is governed by

∂⟨q1r1⟩

∂t
+

1
τ
⟨q1r1⟩ = −⟨q1⟩U

trap
+U0

1⟨q1q1⟩ +DT
1 ∫ q1∇

T
2 ρ2dΓ2,

(B5)

where ⟨q1⟩ is given by (B3) and ⟨q1q1⟩ satisfies

∂⟨q1q1⟩

∂t
+

2d
τR

1
[⟨q1q1⟩ −

1
d

I] = 0. (B6)

Similar to ⟨q1⟩, the net nematic order of the probe regardless of the
presence of the trap or the bath particles is given by

⟨Q1⟩(t) = exp[−2dt/τR
1 ]Q1(0), (B7)

where we have defined the net trace-free nematic tensor ⟨Q1⟩

= ⟨q1q1⟩ − I/d.
At long times (t →∞), there is no net polar order of the probe,

⟨q1⟩ = 0, and the net nematic order is isotropic, ⟨q1q1⟩ = I/d.
Using Eqs. (25), (B3), and B(B5), we obtain

∂Cov (q1, r1)

∂t
+

1
τ

Cov (q1, r1) = U0
1 Cov (q1, q1)

+DT
1 ∫ Δq1∇

T
2 ρ2dΓ2, (B8)

where Δq1 = q1 − ⟨q1⟩.

APPENDIX C: ASYMPTOTIC ANALYSIS OF THE PROBE
IN THE ABSENCE OF BATH PARTICLES

In Eq. (46), the timescale of transient decay τ can be written as

1
τ
=

d − 1
τR

1
+

1
τk
=

d − 1 + ε
τR

1
, (C1)

where ε = τR
1 /τk = kτR

1 /ζ1. Using this definition, the solution of (46)
is given by

Cov (q1, r1)(t) = e−t/τCov (q1, r1)(0)

+U0
1∫

t

0
exp(−

t − s
τ
)Var (q1)(s)ds. (C2)

From Eq. (B7), the preceding equation becomes

Cov (q1, r1)(t) = e−t/τCov (q1, r1)(0) +
U0

1 τI
d
(1 − e−t/τ

)

−
ℓ1

d + 1 − ε
(e−2dt/τR − e−t/τ

)⟨Q1⟩(0). (C3)

In the long-time limit (t/τR ≫ 1 and t/τ ≫ 1), we obtain Eq. (48) in
the text. Using Eq. (B2) in the absence of bath particles, we obtain

Var (r1)(t) = e−2t/τk Var (r1)(0) + τk
⎛

⎝
DT

1 +
(U0

1)
2τ

d
⎞

⎠
I(1 − e−2t/τk)

+ 2U0
1∫

t

0
exp[−2

t − s
τk
][Cov ′(q1, r1)(s)]

symds,

(C4)

where Cov ′(q1, r1)(s) = Cov (q1, r1)(s) −U0
1 τI/d is the time-

dependent (transient) part of the covariance of q1 and r1. The
integral in (C4) can be carried out explicitly but is not important
for the following discussion.

In the presence of the harmonic trap, the system exhibit two
timescales that are important: the reorientation time τR

1 and the vis-
coelastic timescale τk; their relative importance is characterized by
the parameter ε. In the weak-trap limit, ε→ 0, the two timescales
are well-separated. It is useful to define the fast time variable t1 = t
and the slow time variable t2 = εt. We now consider the limit ε→ 0
and the intermediate timescale in which the ABP has experienced
many reorientations due to rotary diffusion but has not reached the
“boundary” of the trap, i.e., t1/τR

1 ≫ 1 but t2/τR
1 = εt/τR ≪ 1.

Differentiating Eq. (C4) leads to

d
dt

Var (r1)(t) =
−2
τk

e−2t/τk Var (r1)(0) + 2
⎛

⎝
DT

1 +
(U0

1)
2τ

d
⎞

⎠
Ie−2t/τk

+ 2U0
1[Cov ′(q1, r1)(t)]

sym
+ 2U0

1
−2
τk

× ∫

t

0
exp[−2

t − s
τk
][Cov ′(q1, r1)(s)]

symds.

(C5)

Since 1/τk = ε/τR
1 and

t
τk
=

t2

ετk
=

t2

τR
1
≪ 1,

t
τ
=

t1

τR
1
(d + 1 − ε)≫ 1, (C6)
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we have

e−2t/τk = e−2t2/τR
1 = 1 +O(t2/τR

1 ), (C7)

(U0
1)

2τ
d

=
U0

1ℓ1

d(d − 1)
[1 +O(ε)]. (C8)

Therefore, Eq. (C5) at leading order is

1
2

d
dt

Var (r1)(t) = (DT
1 +

U0
1ℓ1

d(d − 1)
)I = (DT

1 +Dswim
1 )I. (C9)

It is clear that, in the weak-trap limit in this intermediate timescale,
the ABP exhibits a diffusive behavior with the free-space diffusivity
DT

1 +Dswim
1 .

We now consider the weak-trap limit but at long times,
t/τR

1 ≫ 1, t/τk ≫ 1. So long as the trap strength is not identically
zero, the ABP will eventually (t/τk ≫ 1) experience the confinement
of the trap. Using Eq. (C4), we obtain at long times,

1
τk

Cov (r1, r1)→ (DT
1 +Dswim

1 )I. (C10)

In the strong-trap limit (ε→∞) and at long times, we
have τ/τR

1 = O(1/ε) and the position fluctuation of the probe
Var (r1)/τk = DT

1 .
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