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The transport of self-propelled particles and microorganisms in the presence of fluid
flows and geometric confinement is important for the understanding of many biological
and engineering processes, from the infection by motile bacteria to the formation of
biofilms and the delivery of medical cargo. In plane Poiseuille flow, active Brownian
particles (ABPs) are shown to exhibit intriguing dynamics including boundary accumu-
lation, upstream swimming, and non-monotonic dependence of longitudinal dispersion
on flow strength. Compared to the transport phenomena in position space, a theoretical
understanding of the long-time orientational dynamics of active particles in spatially
inhomogeneous flow remains lacking. In this work, we develop a generalized Taylor
dispersion theory to analyze the long-time orientational transport of ABPs in plane
Poiseuille flow. Our theory reveals that at long times the net orientational distribution
satisfies an effective advection diffusion equation in orientation space. This model allows
us to define an average angular drift and an effective rotational dispersion coefficient.
For passive Brownian particles, we derive an exact solution to the rotational dispersion
coefficient. Similar to the classical longitudinal Taylor dispersion of Brownian particles,
we show that in strong flow the rotational dispersion coefficient has a quadratic scaling
with the characteristic flow speed. For ABPs with finite swim speeds, we show that
the rotational dispersion coefficient exhibits a non-monotonic dependence on the flow
strength. Asymptotic analysis in the weak-swimming limit shows that compared to
passive particles, activity can reduce the dispersion coefficient. The rotational GTD
theory is validated against Brownian dynamics simulations. Our results show that the
coupling between flow-induced rotations, confinement, activity, and Brownian diffusion
can give rise to nontrivial transport dynamics in orientation space.
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1. Introduction

Transport and mixing of micron-sized particles in the presence of fluid flows and
geometric confinement are important for various biological and industrial processes. At
low Reynolds number, the coupling between spatially inhomogeneous fluid advection
and Brownian motion often leads to enhanced mixing. The prototypical example of
such an effect is the shear-enhanced longitudinal dispersion of a Brownian particle in
Poiseuille flow through a channel (Taylor 1953), which is often refered to as Taylor
dispersion. Brownian motion in the transverse direction of the channel allows the particle
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to sample different streamlines. As a result, the particle experiences a variation in its
longitudinal advection as it migrates in the transverse direction. At long times, the
interaction between transverse diffusion and longitudinal advection gives rise to enhanced
longitudinal dispersion. Due to the prevalence of flow-induced dispersion, a generalized
Taylor dispersion (GTD) theory was developed and has become an important paradigm
for the understanding of a multitude of transport phenomena involving Brownian parti-
cles (Frankel & Brenner 1989; Brenner & Edwards 1993).

In recent decades, GTD has been further developed to accommodate the transport
dynamics of motile microswimmers and particles such as gyrotactic microorganisms (Hill
& Bees 2002; Manela & Frankel 2003; Bees & Croze 2010; Bearon et al. 2012), run-
and-tumble particles (Bearon 2003), and active Brownian particles (Alonso-Matilla et al.
2019; Jiang & Chen 2019; Peng & Brady 2020). An active Brownian particle (ABP)
self-propels with a constant swim speed Us in a body-fixed direction q (q · q = 1). The
swimming direction q randomizes over time due to rotational Brownian motion with
a diffusivity DR. When placed in planar Poiseuille flow, ABPs are shown to exhibit
a non-monotonic dispersion behavior. In the weak flow limit, the dispersion coefficient
is given by the sum of the bare translational diffusivity DT and the swim diffusivity.
When the flow speed is much larger than the swim speed, activity is obscured and the
passive Taylor dispersion coefficient is obtained. As shown by Peng & Brady (2020), the
dispersion coefficient as a function of the flow speed decreases for weak flow before it
increases to meet the passive result in the strong flow limit. The minimum is obtained
when the flow speed is comparable to the swim speed.

Compared to transport in position space, the long-time orientational transport of
ABPs in planar Poiseuille flow remains poorly understood. In unbounded linear flows,
Leahy et al. (2013, 2015) showed that axisymmetric particles exhibit enhanced rotational
dispersion. Because the flow field is linear, the rotational dispersion does not depend
on the activity (see section 2.2). In an earlier work (Peng 2024), we developed a GTD
theory that describes the long-time orientational transport of an axisymmetric particle in
unbounded linear flows. Here, we extend this theory to study the long-time orientational
transport of ABPs in planar Poiseuille flow. For unbounded linear flows, one only needs to
consider the orientational degree of freedom. In planar Poiseuille flow, both the position
and orientation of the ABP need to be considered.

In this work, we show that ABPs exhibit a non-monotonic dispersion behavior in
orientation space. For passive Brownian particles (Us = 0), a closed-form analytic
expression for the dispersion coefficient is obtained. Similar to the classical Taylor
dispersion of Brownian particles in position space, the rotational dispersion coefficient
has a quadratic scaling with the flow speed in the strong flow limit. Compared to the
rotational dispersion of passive particles, active particles exhibit reduced dispersion.
Using asymptotic analysis, we show that this swim-induced hindrance occurs at O(Pe2

s),
where Pes = UsH/DT with H being the half-width of the channel. The results from our
continuum theory agree with those obtained from Brownian dynamics (BD) simulation
that resolves the Langevin equations of motion.

This paper is organized as follows. In section 2, starting from the Smoluchowski
equation we derive a GTD theory that describes the long-time orientational dynamics of
an ABP in a generic flow field. We then specialize the equations for the case of a planar
Poiseuille flow. We show that the average angular drift velocity vanishes. In section 3.1, an
asymptotic solution in the weak-swimming limit is developed. We show that activity can
reduce the long-time dispersion. We discuss the dispersion behavior for finite swim speeds
in section 3.2 and compare the numerical solutions of the macrotransport equations with
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those obtained from BD. The effect of particle shape on the long-time dispersion is
considered in section 3.3. Lastly, we conclude in section 4.

2. Problem formulation

2.1. The Smoluchowski equation

We consider a dilute suspension of active Brownian particles (ABPs) in a generic
background flow in two dimensions. The particles are assumed spherical and their size
are negligible compared to the characteristic length of the flow. In a dilute suspension,
we need only consider the dynamics and transport of a single active particle. The
configuration of the particle is described by its position vector x and its unit orientation
vector q (q · q = 1). Because the particle undergoes stochastic motion, we adopt a
statistical mechanical description of its phase-space dynamics by defining the probability
density function P (x, q, t), where t is the time variable. The probability density function
is governed by the Smoluchowski equation,

∂P

∂t
+∇ · jT +∇R · jR = 0, (2.1)

where the translational and rotational fluxes are, respectively,

jT = UsqP + ufP −DT∇P, (2.2a)

jR = ΩP −DR∇RP. (2.2b)

In (2.2a), the ABP is advected by its own swim speed Us in the direction q, the
background flow velocity uf , and Brownian motion with diffusivity DT . Similarly, in
(2.2b), the ABP rotates due to the background flow and the rotational Brownian motion
with diffusivity DR. The angular velocity due to the flow Ω = ω/2 with ω = ∇ × uf
being the vorticity pseudovector. No-flux boundary condition is assumed to hold at any
solid boundaries: n · jT = 0, where n is a unit normal vector at the boundary. In (2.2b),
∇R = q× ∂

∂q is the gradient operator in orientation space (Brenner & Condiff 1974; Doi

& Edwards 1988).
Integrating over the position space variable, we define the net orientational distribution

as

Ψ(q, t) =

∫
P (x, q, t)dx. (2.3)

From (2.1) and (2.2), we have

∂Ψ

∂t
+∇R ·

(∫
ΩPdx−DR∇RΨ

)
= 0, (2.4)

where we have used the no-flux condition and assumed that at infinity the probability
density decays to zero sufficiently fast. BecauseΩ is a function of x, the resulting equation
(2.4) is not closed for Ψ . In general, one needs to calculate P before the integral can be
carried out.

2.2. A generalized Taylor dispersion theory

In two dimensions, we parametrize q using the orientation angle φ such that q =
cosφex+sinφey, where φ ∈ [0, 2π). Here, ex and ey are unit basis vectors of the Cartesian
frame (x, y). With this, we write (2.4) as

∂Ψ

∂t
+

∂

∂φ

(∫
ΩPdx−DR

∂Ψ

∂φ

)
= 0, (2.5)
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where Ω = Ωez and ez = ex× ey. In the following, we treat the rotational dispersion of
ABPs in Fourier space (Barakat & Takatori 2023; Peng 2024). To this end, we first define
the unbounded angular coordinate as ϕ = 2πj + φ, where j ∈ Z and φ is the bounded
or local orientation angle. In other words, one may identify the cell index j as the global
coordinate. We introduce the semidiscrete Fourier transform (Trefethen 2000)

f̂(k) = 2π

∞∑
j=−∞

e−ikj2πfj , (2.6)

where k is the wavenumber, and i (i2 = −1) is the imaginary unit. With this definition,
the global version of (2.5) in Fourier space may be written as

∂Ψ̂

∂t
+

(
ik +

∂

∂φ

)[∫
ΩP̂dx−DR

(
ik +

∂

∂φ

)
Ψ̂

]
= 0. (2.7)

To reduce the above equation into a more familiar form, we first define the structure
function Ĝ(x, φ, k, t) such that

P̂ (x, φ, k, t) =
〈
Ψ̂
〉

(k, t)Ĝ(x, φ, k, t). (2.8)

Invoking (2.8) and the periodic boundary condition on φ (Barakat & Takatori 2023; Peng
2024), we obtain

∂
〈
Ψ̂
〉

∂t
+ ik

〈∫
ΩĜdx

〉〈
Ψ̂
〉

+ k2DR

〈
Ψ̂
〉

= 0, (2.9)

where we have taken an average over the local cell: 〈(·)〉 = (1/2π)
∫ 2π

0
(·)dφ. Taking a

small wavenumber expansion,

Ĝ(x, φ, k, t) = g(x, φ, t) + ikb(x, φ, t) +O(k2), (2.10)

we obtain

∂
〈
Ψ̂
〉

∂t
+ ikΩeff

〈
Ψ̂
〉

+ k2Deff
R

〈
Ψ̂
〉

= 0, (2.11)

where the average angular drift and effective dispersion coefficient are, respectively, given
by

Ωeff =

〈∫
Ωgdx

〉
, and Deff

R = DR −
〈∫

Ωbdx

〉
. (2.12)

We note that (2.11) is a long-time effective advection-diffusion equation written in Fourier
space with the transport coefficients given in (2.12). In the following, we refer to g as the
average field and b as the displacement field.

To calculate the transport coefficients, we need a set of equations for g and b. Sub-
tracting (2.9) multiplied by Ĝ from the Fourier-transformed version of (2.1), we obtain

∂Ĝ

∂t
+∇ ·

(
UsqĜ+ uf Ĝ−DT∇Ĝ

)
+ ik

(
Ω −

〈∫
ΩĜdx

〉)
Ĝ

− 2ikDR
∂Ĝ

∂φ
+

∂

∂φ

(
ΩĜ−DR

∂Ĝ

∂φ

)
= 0. (2.13)

In the following, we focus on the steady state solution and time dependence will be
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dropped. Inserting the expansion (2.10) into (2.13), we obtain at O(1)

∇ · (Usqg + ufg −DT∇g) +
∂

∂φ

(
Ωg −DR

∂g

∂φ

)
= 0. (2.14)

The conservation condition is
〈∫

gdx
〉

= 1. At O(k), we have

∇ · (Usqb+ ufb−DT∇b) +
∂

∂φ

(
Ωb−DR

∂b

∂φ

)
=
(
Ωeff −Ω

)
g + 2DR

∂g

∂φ
, (2.15)

and
〈 ∫

bdx
〉

= 0.
We note that the macrotransport equations (2.14) and (2.15) describe the long-time

effective dynamics of an ABP in a generic flow field. For an unbounded linear flow,
the angular velocity Ω is spatially homogeneous. In this case, we may define g̃(φ) =∫
g(x, φ)dx, b̃(φ) =

∫
b(x, φ)dx, and obtain

∂

∂φ

(
Ωg̃ −DR

∂g̃

∂φ

)
= 0, (2.16a)

∂

∂φ

(
Ωb̃−DR

∂b̃

∂φ

)
=
(
Ωeff −Ω

)
g̃ + 2DR

∂g̃

∂φ
. (2.16b)

Equation (2.16) is obtained by Peng (2024) and used to study the long-time orientational
dynamics of a spheroidal particle in simple shear and extensional flows. Because the flow
field is linear, the swimming motion does not play a role in the long-time orientational
dynamics. However, in spatially inhomogeneous flows, the swimming motion affects the
long-time orientational dynamics.

2.3. The case of a plane Poiseuille flow

Consider a plane Poiseuille flow between two parallel plates with a separation distance
2H. The channel walls are located at y = ±H and x is taken as the longitudinal
coordinate. With this definition, the velocity field is given by

uf = Uf

(
1− y2

H2

)
ex, (2.17)

where Uf is the flow speed at the channel centerline (y = 0). The average field equation
(2.14) reduces to

∂

∂y

(
Us sinφ g −DT

∂g

∂y

)
+

∂

∂φ

(
Ωg −DR

∂g

∂φ

)
= 0, (2.18)

where g is invariant in x, g = g(y, φ). Similarly, the displacement field is governed by

∂

∂y

(
Us sinφ b−DT

∂b

∂y

)
+

∂

∂φ

(
Ωb−DR

∂b

∂φ

)
=
(
Ωeff −Ω

)
g + 2DR

∂g

∂φ
. (2.19)

The angular velocity due to the flow is Ω = Ufy/H
2. The conservation conditions are〈∫

g(y, φ)dy
〉

= 1 and
〈∫

b(y, φ)dy
〉

= 0.

2.4. Dimensionless equations

To make the equations dimensionless, we scale length by the channel half-width H
and time by the diffusive timescale τD = H2/DT . Denoting dimensionless variables by
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an overhead bar, we introduce the following variables,

ȳ =
y

H
, (2.20a)

Ω̄eff = ΩeffτD (2.20b)

D̄eff
R = Deff

R τD, (2.20c)

ḡ = gH, (2.20d)

b̄ = bH. (2.20e)

Three dimensionless parameters dictate the behavior of the macrotransport dynamics.
The first parameter is the swim Péclet number Pes = UsH/DT , which compares the
relative importance of swim and translational diffusion. The second parameter is the
flow Péclet number Pef = UfH/DT , which characterizes the relative dominance of fluid
advection and translational diffusion. Lastly, γ = H/δ with δ =

√
DT τR and τR = 1/DR.

Note that γ2 = τD/τR, which compares the translational diffusion timescale τD to the
reorientation time τR.

The dimensionless average field is governed by

∂

∂ȳ

(
Pes sinφ ḡ − ∂ḡ

∂ȳ

)
+

∂

∂φ

(
Pef ȳ ḡ − γ2 ∂ḡ

∂φ

)
= 0. (2.21)

The dimensionless displacement field is given by

∂

∂ȳ

(
Pes sinφ b̄− ∂b̄

∂ȳ

)
+

∂

∂φ

(
Pef ȳ b̄− γ2 ∂b̄

∂φ

)
=
(
Ω̄eff − Pef ȳ

)
ḡ + 2γ2 ∂ḡ

∂φ
. (2.22)

We remark that the average field equation (2.21) is the same as that for the macro-
transport of ABPs in linear space in Poiseuille flow (Peng & Brady 2020). Taking the

zeroth orientational moment of ḡ gives the number density, n̄(ȳ) =
∫ 2π

0
ḡ(ȳ, φ)dφ. From

(2.12), we have

Ω̄eff =
1

2π

∫ 2π

0

dφ

∫ 1

−1

dȳ P ef ȳ ḡ =
1

2π

∫ 1

−1

Pef ȳ n̄(ȳ)dȳ = 0, (2.23)

where we have made use of the fact that n̄(−ȳ) = n̄(ȳ). As a result, the angular drift
velocity vanishes in Poiseuille flow. Using (2.12), the dimensionless effective dispersion
coefficient can be written as

D̄eff
R = γ2 −

〈∫ 1

−1

Pef ȳ b̄dȳ

〉
. (2.24)

The ratio between the dimensional dispersion coefficient and the bare diffusivity is given
by

Deff
R

DR
=
D̄eff

γ2
= 1− 1

γ2

〈∫ 1

−1

Pef ȳ b̄dȳ

〉
. (2.25)

To obtain the dispersion coefficient, we first need to solve (2.21). Using the solution to
ḡ, we solve (2.22) and then calculate D̄eff

R using (2.24).
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3. Results

3.1. Weak-swimming asymptotic analysis

Using asymptotic analysis, we consider the orientational dynamics in the weak-
swimming limit characterized by Pes � 1. We pose regular expansions for all variables:

ḡ = ḡ0 + Pes ḡ1 + Pe2
s ḡ2 +O(Pe3

s), (3.1a)

b̄ = b̄0 + Pes b̄1 + Pe2
s b̄2 +O(Pe3

s), (3.1b)

D̄eff
R = D̄eff

0 + Pes D̄
eff
1 + Pe2

s D̄
eff
2 +O(Pe3

s). (3.1c)

Henceforth, we shall use D̄eff as a shorthand for D̄eff
R for notational convenience. At O(1),

the particle is passive, i.e., not self-propelled.

3.1.1. Passive Brownian particles

At O(1), the particle is a passive Brownian particle. The average field at this order is
governed by

∂

∂ȳ

(
−∂ḡ0

∂ȳ

)
+

∂

∂φ

(
Pef ȳ ḡ0 − γ2 ∂ḡ0

∂φ

)
= 0, (3.2a)

−∂ḡ0

∂ȳ
= 0, ȳ = ±1, (3.2b)〈∫ 1

−1

ḡ0dȳ

〉
= 1, (3.2c)

which has the solution ḡ0 = 1/2. With this, the displacement field is governed by

∂

∂ȳ

(
−∂b̄0
∂ȳ

)
+

∂

∂φ

(
Pef ȳ b̄0 − γ2 ∂b̄0

∂φ

)
= −Pef ȳ ḡ0, (3.3a)

−∂b̄0
∂ȳ

= 0, ȳ = ±1, (3.3b)〈∫ 1

−1

b̄0dȳ

〉
= 0. (3.3c)

The solution can be readily obtained as

b̄0 =
1

12
Pef ȳ

(
ȳ2 − 3

)
. (3.4)

Using (2.12) and (3.4), we obtain the dispersion coefficient as

D̄eff
0 = γ2 +

2

15
Pe2

f . (3.5)

In dimensional terms, we have

Deff
0 = DR +

2

15

U2
f

DT
. (3.6)

Scaling the dispersion coefficient by the bare diffusivity, we can write

Deff
0

DR
= 1 +

2

15

Pe2
f

γ2
. (3.7)

For a passive Brownian sphere obeying the Stokes-Einstein-Sutherland relation, we have
ζDT = kBT = ζRDR, where ζ is the translational hydrodynamic drag coefficient, ζR is
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the rotational drag coefficient, kB is the Boltzmann constant, and T is the temperature.
From this, we have γ2 = 3H2/(4a2), where a is the radius of the sphere, and we have
used the drag coefficients of an isolated sphere in free space. We note that for active
particles, Brownian motion can be of biological origin and the diffusion coefficients DT

and DR are thus allowed to be independent parameters.
Just like the classical Taylor dispersion, for large Pef (strong flow), the dispersion

coefficient Deff
0 scales quadratically with the flow speed. One may recover this scaling by

considering the long-time random walk process. In the strong flow limit, the flow-induced
angular velocity (Ω ∼ Uf/H) dominates the stochastic velocity due to Brownian motion,
while the decorrelation time is given by the timescale τD. As particles migrate across
streamlines, they experience a variation in their angular velocity. From a random walk
perspective, we thus obtain Deff

0 ∼ Ω2τD = U2
f /DT .

3.1.2. First order

At O(Pes), the average field is governed by

∂

∂ȳ

(
−∂ḡ1

∂ȳ

)
+

∂

∂φ

(
Pef ȳ ḡ1 − γ2 ∂ḡ1

∂φ

)
= − sinφ

∂ḡ0

∂ȳ
, (3.8a)

∂ḡ1

∂ȳ
= sinφ ḡ0, ȳ = ±1, (3.8b)〈∫ 1

−1

ḡ1dȳ

〉
= 0. (3.8c)

We may guess a solution of the form

ḡ1(ȳ, φ) = A1(ȳ) cosφ+B1(ȳ) sinφ, (3.9)

which leads to the following boundary value problems (BVPs):

−A′′1 + Pef ȳ B1 + γ2A1 = 0, (3.10a)

−B′′1 − Pef ȳ A1 + γ2B1 = 0, (3.10b)

A′1(±1) = 0, B′1(±1) = ḡ0, (3.10c)

where the prime denotes differentiation with respect to ȳ.
The displacement field at this order is given by

−∂
2b̄1
∂ȳ2

+
∂

∂φ

(
Pef ȳ b̄1 − γ2 ∂b̄1

∂φ

)
= − sinφ

∂b̄0
∂ȳ
− Pef ȳ ḡ1 + 2γ2 ∂ḡ1

∂φ
(3.11a)

∂b̄1
∂ȳ

= sinφ b̄0, ȳ = ±1, (3.11b)〈∫ 1

−1

b̄1dȳ

〉
= 0. (3.11c)

Equation (3.11) admits a solution of the form

b̄1(ȳ, φ) = A2(ȳ) cosφ+B2(ȳ) sinφ, (3.12)

where the functions A2 and B2 are governed by

−A′′2 + Pef ȳB2 + γ2A2 = −Pef ȳ A1 + 2γ2B1 (3.13a)

−B′′2 − Pef ȳ A2 + γ2B2 = −∂b̄0
∂ȳ
− Pef ȳ B1 − 2γ2A1 (3.13b)
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Figure 1. (a) Plot of A1 as a function of ȳ for Pef = {1, 10}. (b) Plot of B1 as a function of
ȳ for Pef = {1, 10}. (c) Plot of A2 as a function of ȳ for Pef = {1, 10}. (d) Plot of B2 as a
function of ȳ for Pef = {1, 10}. For all plots, γ = 1.

A′2(±1) = 0, B′2(±1) = b̄0(±1) = ∓1

6
Pef . (3.13c)

From (2.24) and (3.12), one can show that D̄eff
1 vanishes, i.e.,

D̄eff
1 = −

〈∫ 1

−1

Pef ȳ b̄1 dȳ

〉
= 0. (3.14)

Though the O(Pes) fields ḡ1 and b̄1 do not contribute to the effective dispersion, they
provide forcing terms for the equations governing the fields at the next order. We solve
the BVPs using a Chebyshev collocation method with 128 grid points. In figure 1, we
plot the numerical solutions to A1, B1, A2, and B2 for different values of Pef for γ = 1.

3.1.3. Second order

At O(Pe2
s), the average field is governed by

−∂
2ḡ2

∂ȳ2
+

∂

∂φ

(
Pef ȳ ḡ2 − γ2 ∂ḡ2

∂φ

)
= − sinφ

∂ḡ1

∂ȳ
, (3.15a)

∂ḡ2

∂ȳ
= sinφ ḡ1, ȳ = ±1, (3.15b)〈∫ 1

−1

ḡ2dȳ

〉
= 0, (3.15c)

which has a general solution of the form

ḡ2(ȳ, φ) = A3(ȳ) +A4(ȳ) cos(2φ) +B3(ȳ) sin(2φ). (3.16)

The displacement field at O(Pe2
s) is given by

−∂
2b̄2
∂ȳ2

+
∂

∂φ

(
Pef ȳ b̄2 − γ2 ∂b̄2

∂φ

)
=− sinφ

∂b̄1
∂ȳ
− Pef ȳ ḡ2 + 2γ2 ∂ḡ2

∂φ
, (3.17a)
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Figure 2. The effective rotational dispersion coefficient as a function of Pes with γ = 1 and
Pef = 1. The circles are results obtained from solving the full macrotransport equations using
FEM. The squares mark results from BD simulations. The two-term small Pes asymptotic
solution in (3.23) is plotted in a dashed line.

∂b̄2
∂ȳ

= sinφ b̄1, ȳ = ±1, (3.17b)

〈∫ 1

−1

b̄2dȳ

〉
= 0. (3.17c)

Equation (3.17) admits a solution of the form

b̄2(ȳ, φ) = A5(ȳ) +A6(ȳ) cos(2φ) +B4(ȳ) sin(2φ). (3.18)

Using (3.18), we write the dispersion coefficient as

D̄eff
2 = −

∫ 1

−1

Pef ȳ A5(ȳ) dȳ, (3.19)

where A5 is governed by

A′′5 =
1

2
B′2 + Pef ȳ A3 (3.20a)

A′5 =
1

2
B2, ȳ = ±1. (3.20b)

The function A3 is given by

2A′′3 = B′1, (3.21a)

2A′3 = B1, ȳ = ±1. (3.21b)

In addition, the following integral conditions need to be satisfied:∫ 1

−1

A3(ȳ)dȳ = 0, and

∫ 1

−1

A5(ȳ)dȳ = 0. (3.22)

Because A4, A6, B3, B4 are not needed to calculate D̄eff
2 , their solutions will not be

discussed here.

We have shown that the first effect of swimming on the rotational dispersion appears
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at O(Pe2
s). From (3.19), we have

Deff

DR
=

1

γ2

(
D̄eff

0 + Pe2
sD̄

eff
2

)
+ o(Pe2

s)

= 1 +
2

15

Pe2
f

γ2
+ Pe2

s

D̄eff
2

γ2
+ o(Pe2

s). (3.23)

In figure 2, the two-term asymptotic solution given in (3.23) is plotted in a dashed
line. The dispersion coefficient obtained from numerical solutions (see section 3.2) of the
full macrotransport equations (2.21) and (2.22) is marked by circles. We also plot the
results from BD simulations (squares). The two-term solution agrees well with both the
numerical and the BD results in the small Pes regime. Compared to passive particles
(Pes → 0 in figure 2), activity suppresses the long-time rotational dispersion. In the
small Pes expansion, this reduction means that D̄eff

2 < 0. For all data shown in figure 2,
Pef = 1 and γ = 1.

3.2. Finite swim speeds

For finite swim speeds, we solve the full macrotransport equations (2.21) and (2.22)
using a finite element method implemented in freefem++ (Hecht 2012). To validate our
continuum theory, we compare the numerical results with those obtained by integrating
the Langevin equations of motion using the Euler-Maruyama scheme. We calculate the
rotational dispersion coefficient from the mean squared angular displacement at long
times.

From a micromechanical perspective, the evolution of the position and orientation of
an ABP is governed by the Langevin equations. In the absence of inertia, the equations
are given by

0 = −ζ
(

dx

dt
− uf

)
+ FB + F S , (3.24a)

0 = −ζR
(

dq

dt
−Ω × q

)
+LB × q. (3.24b)

In the above, ζ (ζR) is the translational (rotational) hydrodynamic drag coefficient, and
F S = ζUsq is the swim force. The Brownian force (FB) and torque (LB) satisfy white-
noise statistics, 〈

FB
〉
e

= 0,
〈
FB(0)FB(t)

〉
e

= 2DT ζ
2δ(t)I, (3.25a)〈

LB
〉
e

= 0,
〈
LB(0)LB(t)

〉
e

= 2DRζ
2
Rδ(t)I, (3.25b)

where δ(t) is the delta function, I is the identity tensor, and the angle brackets with a
subscript ‘e’ denote the ensemble average over Brownian fluctuations. We note that for
active particles the translational and rotational diffusion constants represent biological
noises; as a result, they are treated as independent parameters.

In figure 3 we compare the results obtained from FEM (circles) with those from BD
simulations (squares) as a function of Pef . The dashed line denotes the analytic solution
when the swim speed is zero, i.e., Pes = 0 or Us = 0. We observe good agreement between
results from FEM and BD. For Pes = 1, activity is weak, and the dispersion coefficient
follows closely that of the passive. For Pes = 10, we observe a non-monotonic variation
of the dispersion as a function of Pef . In the limit Pef → 0, we have Deff → DR, or
Deff/DR → 1. In the strong flow limit, activity is overshadowed by the flow. As a result,
Deff asymptotes to the passive result as can be seen in figure 3. The initial decrease of
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Figure 3. The effective rotational dispersion coefficient as a function of Pef for different values
of Pes. For all results shown, γ = 1. Circles are results obtained from FEM solutions of the
macrotransport equations and squares are from BD simulations. The dashed line denotes the
analytic result for passive Brownian particles given in (3.7).
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Figure 4. The effective rotational dispersion coefficient as a function of Pef for different
particle shapes. For all results shown, γ = 1 and Pes = 10. All data are obtained from FEM.

the dispersion coefficient is a result of the swim-induced hindrance discussed in section
3.1.

3.3. Non-spherical particles

To probe the effect of particle shape on the long-time rotational dispersion, we consider
active spheroids. We model the orientational dynamics of the spheroid in Poiseuille flow
using Jeffery’s equation (Jeffery 1922). In the Smoluchowski formulation, the only change
is in the flow-induced angular velocity, which is given by Ω = ω/2 +Bq× (E · q). Here,
E = 1

2 (∇uf + (∇uf )ᵀ) is the rate-of-strain tensor, B = (r2 − 1)/(r2 + 1) ∈ [0, 1) is
the Bretherton constant (Bretherton 1962) that quantifies the non-spherical shape of the
particle with r being the aspect ratio. For a sphere, B = 0. In the planar Poiseuille flow,
the scalar angular velocity is given by

Ω =
Ufy

H2
[1−B cos(2φ)] , −H 6 y 6 H. (3.26)

In figure 4, we present the dispersion coefficient obtained from FEM as a function of
Pef for different particle shapes. As shown in the figure, the dynamics is dominated by
the contribution from the (φ independent) vorticity while the effect of the alignment from
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the rate-of-strain tensor plays a less important role. From this, we see that the dispersion
coefficient is insensitive to the variation of the particle shape. Such a weak dependence
on the particle shape is also observed in the dispersion of ABPs in position space (Peng
& Brady 2020).

4. Concluding remarks

In this paper, we have developed a generalized Taylor dispersion theory that charac-
terizes the long-time orientational dynamics of an ABP in a background flow. We have
showed that at long times the net orientational distribution of the ABP satisfies an
advection diffusion equation, which allows us to define an average angular drift and an
effective rotational dispersion coefficient. We emphasize that no particular assumptions
about the geometry or flow have been made in deriving the macrotransport equations.
That is, they can be applied to generic flows with or without confinement. For unbounded
linear flows, we have shown that the equations reduce to those obtained by Peng
(2024). We analyzed the macrotransport equations for a planar Poiseuille flow using a
combination of asymptotic expansion and numerical solutions. The transport coefficients
from the continuum theory agree with those obtained from BD simulations of the
Langevin equations.

For passive Brownian spheres, a closed-form expression for the dispersion coefficient
is obtained. The dispersion coefficient increases monotonically as a function of the flow
speed and acquires a quadratic scaling with the flow speed in the strong flow limit. In the
classical Taylor dispersion, the longitudinal dispersion coefficient along the channel also
has a quadratic scaling. This universality can be understood by considering an effective
random walk model that applies at long times. In both the translational (linear) and
rotational dynamics, the long-time dispersion coefficient can be given by U2τ , where U
is a speed and τ is a decorrelation time associated with the random walk. For both
longitudinal and rotational dispersion, the decorrelation time is given by the time it
takes for the particle to diffuse across the channel (τ = τD = H2/DT ), which allows the
particle to access different linear and angular velocities from the flow. In the strong flow
limit, the linear velocity associated with the random walk is given by Uf and the angular
velocity is Uf/H. From this argument, we see that for both longitudinal and rotational
dispersion, a quadratic scaling with the flow velocity is obtained.

It is also interesting to compare the rotational dispersion of passive Brownian particles
in different flow fields. In an unbounded simple shear, prior studies (Leahy et al. 2013,
2015; Peng 2024) showed that Deff/DR = O(1) for non-spherical particles in the strong
shear limit. In simple shear, the angular velocity is spatially homogeneous. To achieve a
flow-enhanced rotational dispersion, in simple shear a non-spherical shape is required. For
a non-spherical particle, the angular velocity varies as a function of the local coordinate φ.
In simple shear, the coupling between advection and diffusion results in a finite increase
of the long-time dispersion compared to the bare diffusivity DR. For Poiseuille flow, the
enhancement is quadratic in Pef . This difference in scaling reveals that spatial variation
of the fluid angular velocity gives rise to a much stronger enhancement to the long-time
dispersion.

The dispersion behavior becomes even more interesting when one turns on activity.
Compared to the case in which activity is absent (i.e., passive), through asymptotic
analysis we showed that the swimming motion hinders rotational diffusion. As a result,
for a fixed but finite activity, the dispersion coefficient is a non-monotonic function of
the flow speed. The dispersion coefficient decreases before it increases and eventually
asymptotes to that of passive particles in the strong flow limit. The transition from
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decreasing to increasing occurs when Pef ∼ Pes or Uf ∼ Us for a fixed γ. When
Uf � Us, activity is obscured by the flow and one recovers the passive result.

To conclude, we note that the coupling between flow-induced rotation, confinement,
activity, and Brownian motion can give rise to nontrivial orientational dynamics. The
results complement our theoretical understanding of the dynamics of active particles
in Poiseuille flow. Because rotational motion can be used to probe the microrheology
of a complex fluid (Cheng & Mason 2003; Andablo-Reyes et al. 2005; Schmiedeberg &
Stark 2005; Wilhelm et al. 2003; Berret 2016), future work needs to study the effective
orientational dynamics of a tracer particle in the presence of other particles.

Funding

This work is supported by the Faculty of Engineering at the University of Alberta.

Declaration of interests

The author reports no conflict of interest.

Author ORCID

Zhiwei Peng https://orcid.org/0000-0002-9486-2837

REFERENCES

Alonso-Matilla, Roberto, Chakrabarti, Brato & Saintillan, David 2019 Transport
and dispersion of active particles in periodic porous media. Phys. Rev. Fluids 4 (4),
043101.

Andablo-Reyes, Efrén, D́ıaz-Leyva, Pedro & Arauz-Lara, José Luis 2005
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