
This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Rotational Taylor dispersion in linear flows

Zhiwei Peng†
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta

T6G 1H9, Canada

(Received xx; revised xx; accepted xx)

The coupling between advection and diffusion in position space can often lead to enhanced
mass transport compared to diffusion without flow. An important framework used to
characterize the long-time diffusive transport in position space is the generalized Taylor
dispersion theory. In contrast, the dynamics and transport in orientation space remains
less developed. In this work, we develop a rotational Taylor dispersion theory that
characterizes the long-time orientational transport of a spheroidal particle in linear flows
that is constrained to rotate in the velocity-gradient plane. Similar to Taylor dispersion
in position space, the orientational distribution of axisymmetric particles in linear flows
at long times satisfies an effective advection-diffusion equation in orientation space. Using
this framework, we then calculate the long-time average angular velocity and dispersion
coefficient for both simple shear and extensional flows. Analytic expressions for the
transport coefficients are derived in several asymptotic limits including nearly-spherical
particles, weak flow, and strong flow. Our analysis shows that at long times the effective
rotational dispersion is enhanced in simple shear and suppressed in extensional flow. The
asymptotic solutions agree with full numerical solutions of the derived macrotransport
equations and results from Brownian dynamics simulations. Our results show that the
interplay between flow-induced rotations and Brownian diffusion can fundamentally
change the long-time transport dynamics.
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1. Introduction

Transport and mixing of solutes or particles in the presence of hydrodynamics flows
are important for various biological and industrial processes. For micron-sized particles
immersed in flows, the coupling between advection and diffusion can often lead to en-
hanced mass transport as compared to diffusion without flow. A classical example of such
a coupling effect is the Taylor dispersion of Brownian solutes in pressure-driven channel
flows (Taylor 1953, 1954a,b; Aris 1956). Brownian motion allows the solute particles to
migrate across streamlines, and then be advected downstream with different velocities.
At long times, the coupling between transverse diffusion and longitudinal advection
gives rise to diffusive transport of the solutes with an effective longitudinal dispersion
coefficient that can be much larger than the bare diffusivity of the solute particle. Since
the work of Taylor (1953), a generalized Taylor dispersion (GTD) framework (Frankel &
Brenner 1989) has been developed to accommodate a wide range of transport problems
including complex geometries, chemical reactions, spatial and/or time periodicity, and
active particles (Brenner 1980; Shapiro & Brenner 1986, 1987, 1990; Morris & Brady 1996;
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Hill & Bees 2002; Bearon 2003; Manela & Frankel 2003; Zia & Brady 2010; Takatori &
Brady 2014; Burkholder & Brady 2017; Alonso-Matilla et al. 2019; Jiang & Chen 2019;
Peng & Brady 2020).

In contrast to the extensive study of the long-time effective transport of particles in
position (linear) space, the dynamics and transport of particles in orientation space re-
mains relatively less developed. For spherical or ‘point’ particles, the consideration of the
orientational dynamics is often unnecessary. For anisotropic particles, their orientational
dynamics plays a role in the overall dynamics and rheology of the suspension composed of
the particles and the fluid (Leal & Hinch 1971; Hinch & Leal 1972; Khair 2016). A typical
example is the orientational dynamics of an isolated spheroid in simple shear. Under
shear, the orientation of the spheroid undergoes complex dynamics governed by Jeffery’s
equation (Jeffery 1922). As a result, a Brownian spheroid in simple shear experiences both
rotational diffusion and angular advection that is non-uniform. An interesting question
we wish to consider is: does the coupling of advection and diffusion in orientation space
lead to enhanced rotational transport?

Using experiments and particle-based simulations, Leahy et al. (2013) showed that
advection-diffusion coupling indeed results in enhanced rotational diffusion at long times
for an axisymmetric particle under shear. In a later paper (Leahy et al. 2015), a continuum
theory is developed to calculate the time-dependent orientation distribution for non-
spherical axisymmetric particles confined to rotate in the velocity-gradient plane, in the
limit of weak diffusion or large Péclet number (see sec. 3.1 for the definition). In this
limit, a coordinate transformation is discovered and used to map the orientation dy-
namics to a diffusion equation, which ultimately allowed the calculation of the long-time
rotational dispersion coefficient. Furthermore, a remarkably simple analytic expression
is obtained for the dispersion coefficient in the large Péclet number limit. In comparison
to the classical Taylor dispersion, Leahy et al. (2015) concluded that their theoretical
consideration does not fit nicely under the canonical GTD framework.

In this work, we show that the flow-enhanced rotational transport in the velocity-
gradient plane can be treated as a GTD in orientation space. To setup the system for
such a treatment, the key step is to consider the unbounded angular displacement ϕ
rather than the orientation angle φ, which is bounded to an interval of length 2π. With
this, one can then break down the unbounded displacement into an infinite sequence of
cells, each of which has a length of 2π. In the language of GTD, one then identifies the
cell index j ∈ Z as the global coordinate and φ as the local coordinate. The derived
GTD theory works for generic linear flows and for arbitrary Péclet numbers. In the large
Péclet number limit, we show that our asymptotic result agrees with that obtained by
Leahy et al. (2015) for steady simple shear. Our results from the GTD theory is validated
against Brownian dynamics simulations.

In section 2, starting from the Smoluchowski equation governing the orientational
dynamics of a spheroidal particle, we develop the GTD formulation for generic linear
flows. Following Leahy et al. (2015), the particle is constrained to rotate in the velocity-
gradient plane. In section 3, we consider the long-time rotational transport in simple
shear and extensional flows. The transport coefficients are calculated using perturbation
expansions in both small and large Péclet number limits. The results obtained in these
asymptotic limits are compared with numerical solutions of the macrotransport equations
and results from Brownian dynamics simulations. Lastly, we conclude the paper in
section 4.
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2. Problem formulation

2.1. The Smoluchowski equation

Consider a spheroidal particle immersed in a linear ambient flow field in an unbounded,
incompressible Newtonian fluid. The particle is sufficiently small so that inertia effects
are neglected and the fluid is in the Stokes regime. The particle is subject to rotational
Brownian motion and no external torque is applied. In the absence of Brownian motion,
the time evolution of the unit orientation vector q (|q| = 1) of the particle is governed
by Jeffery’s equation (Jeffery 1922):

dq

dt
= Ω × q and Ω =

1

2
ω +Bq × (E · q) , (2.1)

where Ω is the instantaneous angular velocity, ω = ∇ × u is the vorticity vector,
E = 1

2 (∇u+ (∇u)ᵀ) is the rate-of-strain tensor, u is the ambient flow field, and
B = (r2 − 1)/(r2 + 1) ∈ [0, 1) is the Bretherton constant that characterizes the
nonsphericity (Bretherton 1962), with r the aspect ratio of the spheroid. For a sphere,
r = 1, and B = 0. For an infinitely thin rod, r →∞, and B → 1.

With Brownian motion, a statistical mechanical description is required. To this end,
we define the orientational probability density function Ψ(q, t), which satisfies the total
conservation condition

∫
S Ψ(q, t)dq = 1 at (any) time t. Here, S = {q | q · q = 1} denotes

the unit sphere of orientations. The orientational probability density function is governed
by the Smoluchowski equation (Brenner & Condiff 1974; Doi & Edwards 1988)

∂Ψ

∂t
+∇R · jR = 0, (2.2)

where jR = ΩΨ−DR∇RΨ is the rotational flux vector,∇R = q×∂/∂q is the rotational
gradient operator, and DR is the rotational diffusivity.

We note that (2.2) can be treated as a marginalization of the full probability density
function P (x, q, t) that describes the joint distribution of the particle in both position
and orientation space, where x is the position vector of the particle center. This full
probability is governed by

∂P

∂t
+∇ · jT +∇R · j′R = 0, (2.3)

where for a Brownian particle jT = uP − DT (q) · ∇P , and j′R = ΩP − DR∇P .
Here, DT is the translational diffusivity of the particle, which is a function of q for
a spheroid. It is clear that Ψ(q, t) =

∫
P (x, q, t)dx. For active (self-propelled) Brownian

particles with a constant swim speed Us, an additional term UsqP would appear in the
translational flux jT . However, this would not affect the resulting equation for Ψ . In fact,
any advective linear velocity is allowed provided that the translational flux vanishes at
infinity. A difficulty in the marginalization would appear if the angular velocity Ω or the
rotational diffusivity DR depends on x. For linear flows as we consider here, the angular
velocity is spatially uniform.

2.2. Rotational Taylor dispersion theory

It is cumbersome to work with the unit orientation vector q in the consideration
of the long-time rotational dispersion because q is bounded to the unit sphere. From
a micromechanical perspective in considering the stochastic trajectory of a particle,
one needs to be able to track the unbounded or cumulative angular displacement. The
particle orientation vector is constrained to rotate in the velocity-gradient plane. In two
dimensions, the orientation vector can be parameterized as q = cosφex + sinφey, where
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ex and ey are the unit basis vectors of the Cartesian coordinate system (x, y), and
φ ∈ [0, 2π) is the orientation angle. The cumulative angular displacement ϕ that is not
bounded to the interval [0, 2π) can be defined via

ϕ = 2πj + φ, (2.4)

where j ∈ Z. Conversely, the bounded orientation angle φ is ϕ modulo 2π. For a constant
angular velocity Ω = Ωez with ez = ex×ey, we have ϕ(t)−ϕ(0) =

∫ t
0
Ωds = Ωt, where

ϕ(0) is a reference value.
We remark that alternative methods exist to quantify the rotational dynamics. In

particular, one may extract a long-time dispersion coefficient from an orientational
correlation function as a function of time in a Brownian dynamics simulation of the
orientational Lagenvin equation of motion (Dhont 1996; Zwanzig 2001; Leahy et al.
2013). One can also directly keep track of the unbounded angular displacement ϕ in a
Brownian dynamics simulation and infer the long-time transport coefficients (Kämmerer
et al. 1997; De Michele & Leporini 2001; Mazza et al. 2006, 2007; Hunter et al. 2011).
Because our aim is to derive a generalized Taylor dispersion theory from a continuum
(Smoluchowski) perspective, such methods are not pursued here. In Leahy et al. (2015),
a coordinate transformation is discovered and used to map the orientational dynamics to
a diffusion equation, which ultimately leads to a closed-form asymptotic solution to the
long-time rotational diffusivity in the high shear rate limit.

In terms of the bounded orientation angle φ, the Smoluchowski equation (2.2) is written
as

∂Ψ

∂t
+

∂

∂φ

(
Ω(φ)Ψ −DR

∂Ψ

∂φ

)
= 0, (2.5)

where the angular velocity Ω(φ) depends on the orientation angle. It is clear that (2.5)
remains unchanged in terms of the unbounded coordinate ϕ. Noting that Ψ = Ψ(ϕ, t) =
Ψ(j, φ, t), one can rewrite Ψ in terms of the sequence {Ψj(φ, t), ∀j ∈ Z }. In other words,
to locate the particle in the unbounded orientation space, one can first identify the cell
index, j, in which the particle resides, and then use the local angular position φ within
this cell. In the language of generalized Taylor dispersion, φ is identified as the local
coordinate whereas the cell index j is the global coordinate (Frankel & Brenner 1989;
Brenner & Edwards 1993). In other words, the long-time diffusive dynamics holds only
when the particles have traversed many cells.

Because the ϕ space is unbounded, it is more convenient to work in Fourier space. In
the following, we make use of the flux-averaging approach of Brady and coworkers (Morris
& Brady 1996; Zia & Brady 2010; Takatori & Brady 2014, 2017; Burkholder & Brady
2017; Peng & Brady 2020). We note that the original approach was developed for the
transport of particles in unbounded domains where the global coordinate is continuous
(e.g., the longitudinal coordinate along a flat channel). Recently, Barakat & Takatori
(2023) extended this approach to accommodate the transport and dispersion in an
oscillating array of harmonic traps, where the global coordinate is the discrete cell index
of the infinite lattice. (An equivalent real-space approach may be taken where one make
use of the method of moments (Brenner 1980; Alonso-Matilla et al. 2019). ) In the current
problem, we have a one-dimensional lattice of unit cells. Following Barakat & Takatori
(2023), we introduce the semidiscrete Fourier transform (Trefethen 2000)

f̂(k) = 2π

∞∑
j=−∞

e−ikj2πfj , (2.6)

where k is the wavenumber, and i (i2 = −1) is the imaginary unit. Notice that the
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transform is from j to k, and the local coordinate φ is unchanged. In Fourier space, the
Smoluchowski equation becomes

∂Ψ̂

∂t
+

(
ik +

∂

∂φ

)[
ΩΨ̂ −DR

(
ik +

∂

∂φ

)
Ψ̂

]
= 0, (2.7)

where Ψ̂ = Ψ̂(k, φ, t) is the Fourier transform of Ψ . The cell-averaged distribution,〈
Ψ̂
〉
(k, t) =

1

2π

∫ 2π

0

Ψ̂(k, φ, t)dφ, (2.8)

satisfies

∂
〈
Ψ̂
〉

∂t
+ ik

〈
ΩΨ̂
〉

+DRk
2
〈
Ψ̂
〉

= 0, (2.9)

which is obtained by averaging (2.7). In writing (2.9), we have invoked the periodic
boundary condition on the local coordinate φ (Barakat & Takatori 2023). One can
relate Ψ̂ to its average by defining the structure function Ĝ such that Ψ̂(k, φ, t) =〈
Ψ̂
〉
(k, t)Ĝ(k, φ, t). The structure function is normalized〈

Ĝ
〉

= 1. (2.10)

To derive an effective advection-diffusion equation for
〈
Ψ̂
〉
, we first take a small

wavenumber expansion of Ĝ, giving

Ĝ(k, φ, t) = g(φ, t) + ik b(φ, t) +O(k2), (2.11)

where g is the average (zero wavenumber) field and b is the displacement field. Inserting
the expansion

〈
ΩΨ̂
〉

=
〈
Ψ̂
〉〈
Ω(g + ik b)

〉
+O(k2) into (2.9), we obtain

∂
〈
Ψ̂
〉

∂t
+ ikΩeff

〈
Ψ̂
〉

+ k2Deff
〈
Ψ̂
〉

= 0, (2.12a)

Ωeff =
〈
Ωg
〉
, Deff = DR −

〈
Ωb
〉
. (2.12b)

Notice that (2.12a) is an effective advection-diffusion equation in Fourier space, with the
effective rotational drift and rotational dispersion coefficient given in (2.12b).

Subtracting (2.9) multiplied by Ĝ from (2.7), we obtain

∂Ĝ

∂t
+ ik

[(
Ω −

〈
ΩΨ̂
〉〈

Ψ̂
〉 ) Ĝ−DR

∂Ĝ

∂φ

]
+

∂

∂φ

[
ΩĜ−DR

(
ik +

∂

∂φ

)
Ĝ

]
= 0. (2.13)

Inserting the expansion (2.11) into (2.13), at O(1) we obtain

∂g

∂t
+

∂

∂φ

(
Ωg −DR

∂g

∂φ

)
= 0. (2.14)

At O(k), we have

∂b

∂t
+

∂

∂φ

(
Ωb−DR

∂b

∂φ

)
= 2DR

∂g

∂φ
+
(
Ωeff −Ω

)
g. (2.15)

The average displacement field vanishes: 〈b〉 = 0. Equations (2.12), (2.14), and (2.15) are
the main results of this paper.

It follows that for a particle undergoing a steady rotation (Ω = const.), g = 1 and b = 0,
which implies that Ωeff = Ω and Deff = DR. As a result, a nonuniform or q-dependent
angular velocity is required to achieve a long-time dispersivity that is potentially different
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Figure 1. (a) Plots of the average angular drift velocity scaled by the sphere result as a function
of Pe for different values of B. (b) Plots of the non-dimensional effective long-time dispersion
coefficient as a function of Pe for different values of B. For spheres (B = 0), the dispersion
coefficient is not affected by the flow. For non-spherical particles, shear-enhanced dispersion is
observed.

from the bare diffusivity DR. To calculate the average drift, one needs to solve (2.14)
and then take the average of Ωg. With the solution of (2.14), one can solve (2.15) and
then use (2.12b) to calculate the dispersion coefficient.

3. Results

3.1. Simple shear

Consider the simple shear flow given by u = γ̇yex, where ex is the unit basis vector
in the x direction of the Cartesian coordinate system (x, y, z), γ̇ is the shear rate. The
problem is non-dimensionalized using the time scale τR = 1/DR. Two dimensionless
groups dictate the behavior of the problem. The first is a Péclet number, Pe = γ̇τR, which
compares the time scale of the flow to that of rotational diffusion. The second parameter
is the Bretherton constant that characterizes the aspect ratio of the spheroid (Bretherton
1962). The non-dimensional (scaled by τR) angular velocity is

ΩτR = −1

2
Pe [1−B cos(2φ)] . (3.1)

For spherical particles, B = 0, and the angular velocity is a constant, ΩτR = −Pe/2.
In this case, g = 1 and Ωeff = Ω. From (2.15), we readily obtain b = 0 and Deff = DR.
Because the angular velocity is a constant, the average drift is simply the angular velocity
of the flow and the flow does not affect the dispersion coefficient. Similar to the classical
Taylor dispersion in which a spatially non-uniform advection is present, an orientation-
dependent angular velocity is required to have potentially flow-enhanced dispersion.

To probe the effect of non-uniform angular velocity on the long-time drift and disper-
sion, we seek a regular series solution by writing

g =

∞∑
n=0

Bngn and b =

∞∑
n=0

Bnbn. (3.2)
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The resulting drift and dispersion coefficient are written as, respectively,

ΩeffτR =

∞∑
n=0

BnΩeff
n and

Deff

DR
=

∞∑
n=0

BnDeff
n . (3.3)

We calculate the series solution up to O(B6) in appendix A. The drift terms are given
by

Ωeff
0 = −1

2
Pe, Ωeff

2 =
Pe3

4Pe2 + 64
, Ωeff

4 =
Pe5

(
Pe2 − 80

)
16 (Pe2 + 16)

2
(Pe2 + 64)

, (3.4a)

Ωeff
6 =

(Pe− 4)Pe7(Pe+ 4)
(
Pe2 − 368

)
32 (Pe2 + 16)

3
(Pe2 + 64) (Pe2 + 144)

, (3.4b)

where the odd terms are zero. For the dispersion coefficient, we obtain

Deff
0 = 1, Deff

2 =
Pe2

(
3Pe2 − 16

)
2 (Pe2 + 16)

2 , (3.5a)

Deff
4 =

Pe4
(
3Pe6 − 124Pe4 − 12992Pe2 + 20480

)
2 (Pe2 + 16)

3
(Pe2 + 64)

2 , (3.5b)

Deff
6 =

3C Pe6

2 (Pe2 + 16)
4

(Pe4 + 208Pe2 + 9216)
2 , (3.5c)

where C = −36175872 + 51011584Pe2 − 919040Pe4 − 47328Pe6 − 170Pe8 + Pe10, and
odd terms vanish.

In figure 1, we plot the the average drift scaled by the drift of a sphere and the
dispersion coefficient as a function of Pe for several values of B. The scaled drift is shown
in figure 1(a) and the non-dimensional dispersion coefficient is plotted in figure 1(b). The
truncated series solution is shown in dashed lines. The circles in figure 1 are results
obtained by solving (2.14) and (2.15) at steady state using a Fourier collocation method.
The squares are from Brownian dynamics simulations of the orientational Langevin
equation. In 2D, the Langevin equation (dimensional) is written as dϕ/dt = Ω+

√
2DRξ,

where ξ is a white-noise process satisfying ξ(t) = 0 and ξ(t)ξ(t′) = δ(t − t′). Here, the
overhead bar denotes an ensemble average and δ is the delta function. We remark that in
the Langevin equation, the unbounded angular coordinate ϕ is used in order to calculate
the mean and mean-squared angular displacements, from which the drift and dispersion
coefficient can be obtained. The full numerical solutions (circles) of (2.14) and (2.15)
agree with the results from BD (squares), which validates our theory.

For spheres, B = 0, and the drift is equal to the constant angular velocity. As B
increases, the drift decreases compared to that of the sphere because the alignment term
due to the rate-of-strain becomes more important. In the limit Pe → 0, the drift of
nonspherical particles approaches that of spheres, Ωeff/Ωeff

B=0 → 1. The reduction of the
scaled drift occurs at nonzero Pe and is most prominent for large Pe where the scaled
drift asymptotes to a plateau as Pe → ∞. For non-spherical particles, we observe a
shear-enhanced angular dispersion as shown in figure 1(b). Similar to the classical Taylor
dispersion in linear position space, the enhanced angular dispersion is a result of the
coupling between nonuniform advection and diffusion. For spheres, the angular velocity
is constant, and no shear-enhanced dispersion is observed. When B > 0, the dispersion
coefficient increases monotonically as a function of Pe until it asymptotes to a plateau
at large Pe. In dimensional terms, we have Deff/DR = O(Pe0) as Pe → ∞, which is
different from the classical Taylor dispersion of Brownian solutes in Poiseuille flow where
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Figure 2. Plots of numerical solutions (dashed) at Pe = 1000 and the leading-order asymptotic
solutions (dotted) at large Pe for (a) the average field and (b) the displacement field. In the
plots, B = 0.6. The numerical and asymptotic solutions have excellent agreement and cannot
be distinguished visually.

Deff/DT ∼ Pe2 as Pe → ∞. For dispersion in position space, DT is the translational
diffusivity and Pe = UL/DT with U the characteristic fluid velocity, L the characteristic
width of the channel. We further note that Brownian particles in unbounded shear flows
exhibit anomalous diffusion in position space (San Miguel & Sancho 1979; Foister & Van
De Ven 1980; Katayama & Terauti 1996; Orihara & Takikawa 2011; Takikawa & Orihara
2012).

To understand the behavior of the system at large Pe, we consider a perturbation
expansion in powers of 1/Pe,

g = g0 +
1

Pe
g1 +

1

Pe2
g2 + · · · , (3.6a)

b = b0 +
1

Pe
b1 +

1

Pe2
b2 + · · · . (3.6b)

Inserting the expansion (3.6a) into (2.14), one can solve the resulting equations order by
order. We derive after some algebra

g0 =

√
1−B2

1−B cos(2φ)
, (3.7a)

g1 =
4B
√

1−B2 sin(2φ)

[1−B cos(2φ)]
3 . (3.7b)

We note that in obtaining the preceding solutions, the conservation conditions 〈g0〉 = 1
and 〈g1〉 = 0 are enforced. From (3.7), we obtain

Ωeff

Ωeff
B=0

=
√

1−B2 +O(1/Pe2) as Pe→∞. (3.8)

As Pe → ∞, the scaled drift approaches a finite value that depends on B. Due to
symmetry, the function g1 does not contribute to the drift. The correction is O(1/Pe2),
which comes from g2 in the expansion. In figure 2(a), the leading-order asymptotic
solution g0 is plotted as a function of φ for B = 0.6. The full numerical solution of
(2.14) at Pe = 1000 and B = 0.6 is also shown in figure 2(a). In figure 4(a), we plot the
leading-order drift given in (3.8) as a function of B and the numerical solution of the
macrotransport equations for Pe = 1000. Good agreement between the asymptotic and
numerical solutions is observed.
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Substituting (3.6b) and (3.7) into (2.15), we obtain at O(1)

∂

∂φ

[
−1

2
(1−B cos(2φ)) b0

]
=

[
−1

2

√
1−B2 +

1

2
(1−B cos(2φ))

]
g0, (3.9)

where we have used (3.8). Defining

b̃0(φ) =

√
1−B2

1−B cos(2φ)

[
arctan

(
(1 +B) tanφ√

1−B2

)
− φ

]
, 0 6 φ 6 π/2, (3.10)

one can write the solution at O(1) as

b0(φ) =


b̃0(φ) 0 6 φ 6 π/2,

−b̃0(π − φ) π/2 6 φ 6 π,

b̃0(φ− π) π 6 φ 6 3π/2,

−b̃0(2π − φ) 3π/2 6 φ 6 2π.

(3.11)

In figure 2(b), the leading-order asymptotic solution b0 is plotted as a function of φ for
B = 0.6. The full numerical solution of (2.15) at Pe = 1000 and B = 0.6 is also shown in
figure 2(b). Good agreement between the asymptotic and numerical solutions is observed.
Because of the symmetry of Ω and b0, the average 〈Ωb0〉 vanishes.

To obtain the first nonzero term of shear-induced dispersion, we therefore need to
consider the O(1/Pe) solution to b. At O(1/Pe), the displacement field equation is given
by

∂

∂φ

[
−1

2
[1−B cos(2φ)]b1 −

∂b0
∂φ

]
= 2

∂g0

∂φ
. (3.12)

Similar to (3.10), we define

b̃1(φ) =
4B
√

1−B2 sin(2φ)

[1−B cos(2φ)]
3

[
arctan

(
(1 +B) tanφ√

1−B2

)
− φ

]
+

3B2 − 3

[1−B cos(2φ)]
3 , (3.13)

which is valid for φ ∈ [0, π/2]. Using (3.13), a particular solution to b1 is constructed as

bp1(φ) =


b̃1(φ) 0 6 φ 6 π/2,

b̃1(π − φ) π/2 6 φ 6 π,

b̃1(φ− π) π 6 φ 6 3π/2,

b̃1(2π − φ) 3π/2 6 φ 6 2π.

(3.14)

The full solution can be written as

b1(φ) =
B2 +

√
1−B2 + 2

1−B2

1

1−B cos(2φ)
+ bp1(φ), (3.15)

where the first term on the right-hand side is the homogeneous solution. To compare
the O(1) asymptotic solutions with numerical solutions, we first construct a hybrid
approximation to g1, given by gnum

1 = Pe (gnum − g0), where the superscript ‘num’
denotes the numerical solution. In figure 3(a), gnum

1 is compared with the asymptotic
solution g1, and good agreement is observed. Similarly, we define bnum

1 = Pe (bnum − b0).
The results for bnum

1 and b1 are plotted in figure 3(b).
Using (3.15) and the expansion

Deff = Deff
0 +

1

Pe
Deff

1 + · · · , (3.16)
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Figure 3. Plots of numerical solutions (dashed) at Pe = 1000 and the O(1/Pe) asymptotic
solutions (dotted) at large Pe for (a) the average field and (b) the displacement field. In the
plots, B = 0.6. The numerical approximation to g1 is obtained via gnum1 = Pe (gnum − g0),
where the superscript ‘num’ denotes a numerical solution and g0 is given in (3.7a). Similarly,
bnum1 = Pe (bnum − b0). The numerical and asymptotic solutions have excellent agreement and
cannot be distinguished visually.
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Figure 4. Plots of numerical solutions (circles) at Pe = 1000 and the leading-order asymptotic
solutions (dashed) at large Pe for (a) the scaled drift and (b) the dispersion coefficient.

we obtain
Deff

0

DR
= 1 +

〈1

2
[1−B cos(2φ)]b1

〉
=

2 +B2

2 (1−B2)
. (3.17)

In figure 4(b), we compare the asymptotic solution given in (3.17) with the full numerical
solution of the macrotransport equations for Pe = 1000. We note that (3.17) agrees with
the result obtained by Leahy et al. (2015) where a coordinate transformation is employed
to map the orientational dynamics to a diffusion equation in the large Pe limit. In contrast
to their approach, the current theory follows closely the GTD framework and allows us
to calculate both the average drift and effective dispersion for arbitrary Péclet numbers
in generic linear flows.

3.2. Extensional flow

As another case study, we now consider an extensional flow where the angular velocity
is Ω = PeB cos(2φ)ez. The extensional flow tends to align the particle orientation with
the extensional axis (see figure 5). The particle has a nonzero angular velocity when the
orientation deviates from the extensional axis. As shown in figure 5(b), the direction of
rotation depends on the particle orientation relative to the extensional axis.

The average field in the extensional flow is governed by

∂

∂φ

(
BPe cos(2φ)g − ∂g

∂φ

)
= 0, (3.18)
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Figure 5. (a) Schematic of the extensional flow. (b) Schematic of the direction of rotation due
to the extensional flow.

Because the particle can align with both directions of the extensional axis (φ = π/4 and
5π/4 in figure 5(b)), the average field has a periodicity of π, g(φ + π) = g(φ). Defining
φ′ = φ − π/4, we consider g in the interval φ′ ∈ [−π/2, π/2]. In terms of the shifted
variable φ′, we have

∂

∂φ′

(
BPe sin(2φ′)g − ∂g

∂φ′

)
= 0, φ′ ∈

[
−π

2
,
π

2

]
. (3.19)

From (3.19), we see that g is an even function of φ′; this can also be understood by
examining figure 5(b). The average angular drift 〈Ωg〉 vanishes because Ωg is an odd
function of φ′ in the interval φ′ ∈ [−π/2, π/2].

Integrating (3.18) once, we obtain

BPe cos(2φ)g − ∂g

∂φ
= C1. (3.20)

Averaging the above equation over one period, we have 〈Ωg〉 = C1. Because 〈Ωg〉 = 0 as
determined from symmetry, we must have C1 = 0. With this, we obtain

g(φ) =
1

A1
exp

(
1

2
B Pe sin(2φ)

)
, φ ∈ [0, 2π], (3.21)

where A1 is determined from 〈g〉 = 1.
The displacement field in the extensional flow satisfies

∂

∂φ

(
BPe cos(2φ)b− ∂b

∂φ

)
= 2

∂g

∂φ
−B Pe cos(2φ)g =

∂g

∂φ
. (3.22)

Because (3.22) does not admit a simple closed-form analytic solution, we instead seek
pertubative solutions in the following two limits: (1) PeB � 1 and (2) PeB � 1.

In the small PeB limit, we write

g(φ) = 1 + PeBg1(φ) + · · · , (3.23a)

b(φ) = 0 + PeBb1(φ) + · · · , (3.23b)

where

g1 =
1

2
sin(2φ), and b1 =

1

4
cos(2φ). (3.24a)

From this, we determine the dispersion coefficient as

Deff

DR
= 1− (PeB)2

〈
cos(2φ)b1

〉
+O

(
Pe4B4

)
= 1− 1

8
Pe2B2 +O

(
Pe4B4

)
. (3.25)

In figure 6, we plot the effective dispersion coefficient as a function of PeB in the
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Figure 6. Plots of the effective dispersion coefficient as a function of PeB in the extensional
flow. Circles are results obtained from the numerical solution of the Taylor dispersion theory,
squares are results calculated from BD simulations, and the dashed line denotes the leading-order
asymptotic solution for small PeB given in (3.25).

extensional flow. The leading-order asymptotic solution for small PeB in (3.25) is
denoted by the dashed line. In the small PeB regime, the asymptotic solution agrees well
with both the full numerical solution (circles) of the macrotransport equations and results
obtained from BD simulations (squares). In the extensional flow, rotational dispersion
is hindered and the dispersion coefficient vanishes in the large PeB limit. Because the
extensional flow acts to align the particle orientation with the extensional axis, in the
strong flow limit random reorientations are suppressed.

We now consider the probability distributions in the strong flow limit characterized
by ε = 1/(PeB) � 1. In the limit PeB → ∞ or ε → 0, the orientational distribution
becomes a delta function localized at φ0 = π/4 due to strong alignment. For strong
flow, the particle orientation is closely aligned with the extensional axis, which implies
the existence of a boundary layer near φ0 = π/4. A dominant balance reveals that the
boundary layer thickness is O(

√
ε). Introducing the stretched coordinate ξ = (φ−φ0)/

√
ε,

we rewrite (3.18) in the boundary layer as

∂

∂ξ

(
cos
(

2φ0 + 2ε1/2ξ
)
g̃ −
√
ε
∂g̃

∂ξ

)
= 0, (3.26)

where g̃(ξ) = g(φ). Noting that cos(2φ0) = 0, and cos
(
2φ0 + 2ε1/2ξ

)
= −2ξ

√
ε+ 4

3ξ
3ε3/2−

4
15ξ

5ε5/2 +O(ε7/2), we expect an expansion of the form

g̃ =
1√
ε
g̃0 + · · · , (3.27)

where the leading-order term is O(1/
√
ε) due to the conservation of probability. In the

bulk (outside the boundary layer), the orientational distribution is zero to algebraic
orders of

√
ε.

The leading-order orientational distribution is governed by

∂

∂ξ

(
2ξg̃0 +

∂g̃0

∂ξ

)
= 0, (3.28)

which admits a solution of the form g̃0 = A0e
−ξ2 , where A0 remains to be determined.

In writing the solution, we have made use of the matching condition g̃ → 0 as ξ → ∞.
From the conservation, 〈g〉 = 1, we obtain A0 =

√
π. Due to symmetry, the leading-order

solution is valid as φ approaches φ0 from either side. We then construct a leading-order
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Figure 7. (a) Plots of numerical solution of g (dashed) at PeB = 20 and the leading-order
asymptotic solution (dotted) given in (3.29). (b) Plots of numerical solution of b (dashed) at
PeB = 20 and the leading-order asymptotic solution (dotted) given in (3.33).

composite solution as

g =

√
π

ε
exp

(
− (φ− φ0)

2

ε

)
+ · · · , (3.29)

where the dots denote higher-order corrections. In figure 7(a), we compare the leading-
order solution in (3.29) with the numerical solution of the full equation for PeB = 20.
We note that indeed the leading-order solution in (3.29) approaches a delta function
upon appropriate scaling in the limit ε→ 0.

We now proceed to analyze the displacement field, which in the boundary layer is
expanded as

b̃ = b̃0 + · · · , (3.30)

where we remark that b̃ is O(1) at leading order. At leading order, we obtain

− ∂

∂ξ

(
2ξb̃0 +

∂b̃0
∂ξ

)
= 2ξg̃0 + 2

∂g̃0

∂ξ
. (3.31)

The equation is solved by

b̃0 =
(
C0 −

√
πξ
)
e−ξ

2

. (3.32)

Using the normalization condition 〈b〉 = 0, we must have
∫∞
−∞ b̃0dξ = 0, which gives

C0 = 0. In terms of φ, we may write

b0(φ) = −
√
π
φ− φ0√

ε
exp

(
− (φ− φ0)

2

ε

)
. (3.33)

In figure 7(b), we compare the leading-order solution of b in (3.33) with the numerical
solution of the full equation for PeB = 20.

Taking the limit ε→ 0, we obtain

Deff

DR
= 1− 〈Ωb〉 → 1− 1

π

∫ ∞
−∞

(−2)ξb̃0(ξ)dξ = 0. (3.34)

As a result, we have shown that the dispersion coefficient vanishes in the strong flow limit.
This asymptotic result agrees with the full numerical solution and the BD simulation
results (see figure 6).
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4. Concluding remarks

In this paper, we have developed a generalized Taylor dispersion theory that describes
the long-time rotational dispersion of a spheroidal particle in linear flows that is con-
strained to rotate in the velocity-gradient plane. As is standard for Taylor dispersion, the
average drift and the effective dispersion are treated in a unified framework by leveraging
a flux-averaging method in Fourier space. The results obtained from the continuum theory
are corroborated by Brownian dynamics simulations of the orientational equation of
motion. Using asymptotic analysis in the strong flow limit, we have showed that a simple
shear enhances while an extensional flow hinders the long-time rotational dispersion.
More specifically, we showed that Deff/DR = O(1) in simple shear and Deff/DR → 0 in
extensional flow as Pe → ∞ for a given nonzero B. These results reveal that the long-
time rotational dispersion depends qualitatively on the characteristics of the background
flow.

While we focused on the long-time dispersion in steady flows, our generalized Taylor
dispersion theory applies equally well to time-periodic flows such as oscillatory shear. In
oscillatory shear, one needs to first obtain the long-time (time-dependent) solutions to
the average and displacement fields. In addition to the cell average employed for steady
linear flows, a time average over the oscillation period is needed to obtain the long-time
transport coefficients.

In linear flows as considered in this paper, the angular velocity of the particle due to
the flow does not depend on the spatial position. This spatial uniformity allows us to
consider the conservation equation in orientation space only. A difficulty would arise if
one wishes to consider the rotational dispersion of a particle in flows in the presence of
no-slip boundaries such as pressure-driven channel flows. In such a quadratic flow field,
the angular velocity depends linearly on the transverse coordinate. Mathematically, the
marginalization of P (x, q, t) does not lead to a closed equation for Ψ(q, t). In this case,
one often needs to solve the full probability distribution P (x, q, t) in order to calculate
the long-time translational or rotational transport properties.
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Appendix A. Asymptotic solution in simple shear

In this appendix, we discuss the asymptotic solution for nearly spherical particles in
simple shear in 2D. Inserting the expansion (3.2) into (2.14), we obtain at steady state

1

2
Pe

∂gn
∂φ

+
∂2gn
∂φ2

=
1

2
Pe

∂

∂φ
[cos(2φ)gk−1] , (A 1)

where k = 1, 2, · · · . The normalization becomes 〈g0〉 = 1 and 〈gk〉 = 0 for k = 1, 2, · · · .
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The first four terms in the expansion are written as

g0(φ) = 1, g1(φ) = a11 cos(2φ) + a12 sin(2φ), (A 2a)

g2(φ) = a21 cos(4φ) + a22 sin(4φ), (A 2b)

g3(φ) = a31 cos(2φ) + a32 sin(2φ) + a33 cos(6φ) + a34 sin(6φ), (A 2c)

where

a11 =
Pe2

Pe2 + 16
, a12 =

4Pe

Pe2 + 16
, (A 3a)

a21 =
Pe2

(
Pe2 − 32

)
2 (Pe2 + 16) (Pe2 + 64)

, a22 =
6Pe3

(Pe2 + 16) (Pe2 + 64)
, (A 3b)

a31 =
Pe4

(
Pe2 − 80

)
4 (Pe2 + 16)

2
(Pe2 + 64)

, (A 3c)

a32 = −
Pe3

(
−16Pe4 − 2176Pe2 + 18432

)
4 (Pe2 + 16)

2
(Pe2 + 64) (Pe2 + 144)

, (A 3d)

a33 = −
Pe3

(
2816Pe− Pe3

(
Pe2 − 160

))
4 (Pe2 + 16)

2
(Pe2 + 64) (Pe2 + 144)

, (A 3e)

a34 = −
Pe3

(
6144− 24Pe4

)
4 (Pe2 + 16)

2
(Pe2 + 64) (Pe2 + 144)

. (A 3f )

The solution at O(B4) is written as

g4(φ) = a41 cos(4φ) + a42 sin(4φ) + a43 cos(8φ) + a44 sin(8φ), (A 4)

where

a41 =
Pe2(a31 + a33)− 8Pe(a32 + a34)

2 (Pe2 + 64)
, (A 5a)

a42 =
8Pe(a31 + a33) + Pe2(a32 + a34)

2 (Pe2 + 64)
, (A 5b)

a43 =
Pe(Pe a33 − 16a34)

2 (Pe2 + 256)
, a44 =

Pe(16a33 + Pe a34)

2 (Pe2 + 256)
. (A 5c)

The solution at O(B5) is given by

g5(φ) = a51 cos(2φ) + a52 sin(2φ) + a53 cos(6φ)

+a54 sin(6φ) + a55 cos(10φ) + a56 sin(10φ) (A 6)

where

a51 =
Pe(a41Pe− 4a42)

2 (Pe2 + 16)
, a52 =

Pe(4a41 + a42Pe)

2 (Pe2 + 16)
, (A 7a)

a53 =
Pe2(a41 + a43)− 12Pe(a42 + a44)

2 (Pe2 + 144)
, a54 =

12Pe(a41 + a43) + Pe2(a42 + a44)

2 (Pe2 + 144)
,

(A 7b)

a55 =
Pe(a43Pe− 20a44)

2 (Pe2 + 400)
, a56 =

Pe(20a43 + a44Pe)

2 (Pe2 + 400)
. (A 7c)
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The solution at O(B6) is given by

g6(φ) = a61 cos(4φ) + a62 sin(4φ) + a63 cos(8φ)

+a64 sin(8φ) + a65 cos(12φ) + a66 sin(12φ) (A 8)

where

a61 =
Pe2(a51 + a53)− 8Pe(a52 + a54)

2 (Pe2 + 64)
, a62 =

8Pe(a51 + a53) + Pe2(a52 + a54)

2 (Pe2 + 64)
,

(A 9a)

a63 =
Pe2(a53 + a55)− 16Pe(a54 + a56)

2 (Pe2 + 256)
, a64 =

16Pe(a53 + a55) + Pe2(a54 + a56)

2 (Pe2 + 256)
,

(A 9b)

a65 =
Pe(a55Pe− 24a56)

2 (Pe2 + 576)
, a66 =

Pe(24a55 + a56Pe)

2 (Pe2 + 576)
. (A 9c)

Similarly, the displacement field can be solved order by order. At O(Bn), equation
(2.15) is given by

∂

∂φ

(
Ω0bn +Ω1bn−1 −

∂bn
∂φ

)
= 2

∂gn
∂φ

+
∑
i=n−j

∑
j

Ωeff
i gj − (Ω0gn +Ω1gn−1) , (A 10)

where Ω0 = − 1
2Pe, Ω1 = 1

2Pe cos(2φ), and n = 0, 1, · · · . In (A 10), bk = 0 for k < 0. At
O(1), we have

∂

∂φ

(
Ω0b0 −

∂b0
∂φ

)
= 2

∂g0

∂φ
+
(
Ωeff

0 −Ω0

)
g0. (A 11)

Since g0 = 1, we have b0 = 0. At O(B), we have

∂

∂φ

(
Ω0b1 +Ω1b0 −

∂b1
∂φ

)
= 2

∂g1

∂φ
+
(
Ωeff

0 −Ω0

)
g1 +

(
Ωeff

1 −Ω1

)
g0. (A 12)

The solution is given by

b1(φ) =
Pe

2 (Pe2 + 16)
2

[
Pe
(
Pe2 − 48

)
sin(2φ) +

(
64− 12Pe2

)
cos(2φ)

]
. (A 13)

At O(B2), we have

b2(φ) =
Pe2

8 (Pe2 + 16)
2

(Pe2 + 64)
2

[
− 4Pe

(
17Pe4 + 208Pe2 − 19456

)
cos(4φ)

+3
(
Pe6 − 144Pe4 − 6656Pe2 + 32768

)
sin(4φ)

]
. (A 14)

Following this procedure, we have

b3(φ) = c31 cos(2φ) + c32 sin(2φ) + c33 cos(6φ) + c34 sin(6φ), (A 15a)

b4(φ) = c41 cos(4φ) + c42 sin(4φ) + c43 cos(8φ) + c44 sin(8φ), (A 15b)

b5(φ) = c51 cos(2φ) + c52 sin(2φ) + c53 cos(6φ)

+ c54 sin(6φ) + c55 cos(10φ) + c56 sin(10φ), (A 15c)

b6(φ) = c61 cos(4φ) + c62 sin(4φ) + c63 cos(8φ)

+ c64 sin(8φ) + c65 cos(12φ) + c66 sin(12φ), (A 15d)

where cij can be readily obtained by inserting the expressions into (A 10).
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