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Rotational Taylor dispersion in linear flows

Zhiwei Peng†

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta,
Canada T6G 1H9

(Received 21 January 2024; revised 2 August 2024; accepted 2 September 2024)

The coupling between advection and diffusion in position space can often lead to enhanced
mass transport compared with diffusion without flow. An important framework used
to characterize the long-time diffusive transport in position space is the generalized
Taylor dispersion theory. In contrast, the dynamics and transport in orientation space
remains less developed. In this work we develop a rotational Taylor dispersion theory that
characterizes the long-time orientational transport of a spheroidal particle in linear flows
that is constrained to rotate in the velocity-gradient plane. Similar to Taylor dispersion in
position space, the orientational distribution of axisymmetric particles in linear flows at
long times satisfies an effective advection–diffusion equation in orientation space. Using
this framework, we then calculate the long-time average angular velocity and dispersion
coefficient for both simple shear and extensional flows. Analytic expressions for the
transport coefficients are derived in several asymptotic limits including nearly spherical
particles, weak flow and strong flow. Our analysis shows that at long times the effective
rotational dispersion is enhanced in simple shear and suppressed in extensional flow. The
asymptotic solutions agree with full numerical solutions of the derived macrotransport
equations and results from Brownian dynamics simulations. Our results show that the
interplay between flow-induced rotations and Brownian diffusion can fundamentally
change the long-time transport dynamics.

Key words: colloids, dispersion, microscale transport

1. Introduction

Transport and mixing of solutes or particles in the presence of hydrodynamic flows
are important for various biological and industrial processes. For micron-sized particles
immersed in flows, the coupling between advection and diffusion can often lead to
enhanced mass transport as compared with diffusion without flow. A classical example
of such a coupling effect is the Taylor dispersion of Brownian solutes in pressure-driven
channel flows (Taylor 1953, 1954a,b; Aris 1956). Brownian motion allows the solute
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particles to migrate across streamlines and then be advected downstream with different
velocities. At long times, the coupling between transverse diffusion and longitudinal
advection gives rise to diffusive transport of the solutes with an effective longitudinal
dispersion coefficient that can be much larger than the bare diffusivity of the solute
particle. Since the work of Taylor (1953), a generalized Taylor dispersion (GTD)
framework (Frankel & Brenner 1989) has been developed to accommodate a wide range
of transport problems including complex geometries, chemical reactions, spatial and/or
time periodicity and active particles (Brenner 1980; Shapiro & Brenner 1986, 1987, 1990;
Morris & Brady 1996; Hill & Bees 2002; Bearon 2003; Manela & Frankel 2003; Zia
& Brady 2010; Takatori & Brady 2014; Burkholder & Brady 2017; Alonso-Matilla,
Chakrabarti & Saintillan 2019; Jiang & Chen 2019; Peng & Brady 2020). More recently,
longitudinal dispersion of elongated Brownian rods in a two-dimensional Poiseuille flow
has been considered (Kumar et al. 2021; Khair 2022).

In contrast to the extensive study of the long-time effective transport of particles
in position (linear) space, the dynamics and transport of particles in orientation space
remains relatively less developed. For spherical or ‘point’ particles, the consideration
of the orientational dynamics is often unnecessary. For anisotropic particles, their
orientational dynamics plays a role in the overall dynamics and rheology of the suspension
composed of the particles and the fluid (Leal & Hinch 1971; Hinch & Leal 1972; Khair
2016). A typical example is the orientational dynamics of an isolated spheroid in simple
shear. Under shear, the orientation of the spheroid undergoes complex dynamics governed
by Jeffery’s equation (Jeffery 1922). As a result, a Brownian spheroid in simple shear
experiences both rotational diffusion and angular advection that is non-uniform. An
interesting question we wish to consider is: Does the coupling of advection and diffusion
in orientation space lead to enhanced rotational transport?

Using experiments and particle-based simulations, Leahy et al. (2013) showed that
advection–diffusion coupling indeed results in enhanced rotational diffusion at long times
for an axisymmetric particle under shear. In a later paper (Leahy, Koch & Cohen 2015),
a continuum theory is developed to calculate the time-dependent orientation distribution
for non-spherical axisymmetric particles confined to rotate in the velocity-gradient plane,
in the limit of weak diffusion or large Péclet number (see § 3.1 for the definition). In
this limit, a coordinate transformation is discovered and used to map the orientation
dynamics to a diffusion equation, which ultimately allowed the calculation of the long-time
rotational dispersion coefficient. Furthermore, a remarkably simple analytic expression is
obtained for the dispersion coefficient in the large-Péclet-number limit. In comparison
to the classical Taylor dispersion, Leahy et al. (2015) concluded that their theoretical
consideration does not fit nicely under the canonical GTD framework.

In this work we show that the flow-enhanced rotational transport in the velocity-gradient
plane can be treated as a GTD in orientation space. To setup the system for such a
treatment, the key step is to consider the unbounded angular displacement ϕ rather than
the orientation angle φ, which is bounded to an interval of length 2π. With this, one can
then break down the unbounded displacement into an infinite sequence of cells, each of
which has a length of 2π. In the language of GTD, one then identifies the cell index j ∈ Z

as the global coordinate and φ as the local coordinate. The derived GTD theory works for
generic linear flows and for arbitrary Péclet numbers. In the large-Péclet-number limit, we
show that our asymptotic result agrees with that obtained by Leahy et al. (2015) for steady
simple shear. Our results from the GTD theory is validated against Brownian dynamics
(BD) simulations.

In § 2, starting from the Smoluchowski equation governing the orientational dynamics
of a spheroidal particle, we develop the GTD formulation for generic linear flows.
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Rotational Taylor dispersion in linear flows

Following Leahy et al. (2015), the particle is constrained to rotate in the velocity-gradient
plane. In § 3 we consider the long-time rotational transport in simple shear and extensional
flows. The transport coefficients are calculated using perturbation expansions in both
small- and large-Péclet-number limits. The results obtained in these asymptotic limits are
compared with numerical solutions of the macrotransport equations and results from BD
simulations. Lastly, we conclude the paper in § 4.

2. Problem formulation

2.1. The Smoluchowski equation
Consider a spheroidal particle immersed in a linear ambient flow field in an unbounded,
incompressible Newtonian fluid. The particle is sufficiently small so that inertia effects
are neglected and the fluid is in the Stokes regime. The particle is subject to rotational
Brownian motion and no external torque is applied. In the absence of Brownian motion,
the time evolution of the unit orientation vector q (|q| = 1) of the particle is governed by
Jeffery’s equation (Jeffery 1922):

dq
dt

= Ω × q and Ω = 1
2
ω + Bq × (E · q). (2.1a,b)

Here Ω is the instantaneous angular velocity, ω = ∇ × u is the vorticity vector, E =
1
2 (∇u + (∇u)ᵀ) is the rate-of-strain tensor, u is the ambient flow field and B = (r2 −
1)/(r2 + 1) ∈ [0, 1) is the Bretherton constant that characterizes the non-sphericity
(Bretherton 1962), with r the aspect ratio of the spheroid. For a sphere, r = 1 and B = 0.
For an infinitely thin rod, r → ∞ and B → 1.

With Brownian motion, a statistical mechanical description is required. To this end,
we define the orientational probability density function Ψ (q, t), which satisfies the total
conservation condition

∫
S
Ψ (q, t)dq = 1 at (any) time t. Here, S = {q | q · q = 1} denotes

the unit sphere of orientations. The orientational probability density function is governed
by the Smoluchowski equation (Brenner & Condiff 1974; Doi & Edwards 1988)

∂Ψ

∂t
+ ∇R · jR = 0, (2.2)

where jR = ΩΨ − DR∇RΨ is the rotational flux vector, ∇R = q × ∂/∂q is the rotational
gradient operator and DR is the rotational diffusivity.

We note that (2.2) can be treated as a marginalization of the full probability density
function P(x, q, t) that describes the joint distribution of the particle in both position and
orientation space, where x is the position vector of the particle centre. This full probability
is governed by

∂P
∂t

+ ∇ · jT + ∇R · j′R = 0, (2.3)

where, for a Brownian particle, jT = uP − DT(q) · ∇P and j′R = ΩP − DR∇P. Here, DT
is the translational diffusivity of the particle, which is a function of q for a spheroid. It is
clear that Ψ (q, t) = ∫

P(x, q, t)dx. For active (self-propelled) Brownian particles with a
constant swim speed Us, an additional term UsqP would appear in the translational flux jT .
However, this would not affect the resulting equation for Ψ . In fact, any advective linear
velocity is allowed provided that the translational flux vanishes at infinity. A difficulty in
the marginalization would appear if the angular velocity Ω or the rotational diffusivity
DR depends on x. For linear flows as we consider here, the angular velocity is spatially
uniform.
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2.2. Rotational Taylor dispersion theory
It is cumbersome to work with the unit orientation vector q in the consideration of the
long-time rotational dispersion because q is bounded to the unit sphere (Kämmerer, Kob
& Schilling 1997; De Michele & Leporini 2001; Mazza et al. 2006, 2007; Hunter et al.
2011). From a micromechanical perspective in considering the stochastic trajectory of a
particle, one needs to be able to track the unbounded or cumulative angular displacement.
The particle orientation vector is constrained to rotate in the velocity-gradient plane
(Leahy et al. 2013, 2015). In two dimensions, the orientation vector can be parameterized
as q = cos φex + sin φey, where ex and ey are the unit basis vectors of the Cartesian
coordinate system (x, y), and φ ∈ [0, 2π) is the orientation angle. The cumulative angular
displacement ϕ that is not bounded to the interval [0, 2π) can be defined via

ϕ = 2πj + φ, (2.4)

where j ∈ Z. Conversely, the bounded orientation angle φ is ϕ modulo 2π. For a constant
angular velocity Ω = Ωez with ez = ex × ey, we have ϕ(t) − ϕ(0) = ∫ t

0 Ω ds = Ωt,
where ϕ(0) is a reference value.

We remark that alternative methods exist to quantify the rotational dynamics. In
particular, one may extract a long-time dispersion coefficient from an orientational
correlation function as a function of time in a BD simulation of the orientational Langevin
equation of motion (Dhont 1996; Zwanzig 2001; Leahy et al. 2013). One can also directly
keep track of the unbounded angular displacement ϕ in a BD simulation and infer the
long-time transport coefficients (Kämmerer et al. 1997; De Michele & Leporini 2001;
Mazza et al. 2006, 2007; Hunter et al. 2011). Because our aim is to derive a GTD
theory from a continuum (Smoluchowski) perspective, such methods are not pursued here.
In Leahy et al. (2015) a coordinate transformation is discovered and used to map the
orientational dynamics to a diffusion equation, which ultimately leads to a closed-form
asymptotic solution to the long-time rotational diffusivity in the high shear rate limit.

In terms of the bounded orientation angle φ, the Smoluchowski equation (2.2) is written
as

∂Ψ

∂t
+ ∂

∂φ

(
Ω(φ)Ψ − DR

∂Ψ

∂φ

)
= 0, (2.5)

where the angular velocity Ω(φ) depends on the orientation angle. It is clear that (2.5)
remains unchanged in terms of the unbounded coordinate ϕ. Noting that Ψ = Ψ (ϕ, t) =
Ψ ( j, φ, t), one can rewrite Ψ in terms of the sequence {Ψj(φ, t), ∀j ∈ Z}. In other words,
to locate the particle in the unbounded orientation space, one can first identify the cell
index, j, in which the particle resides, and then use the local angular position φ within
this cell. In the language of GTD, φ is identified as the local coordinate whereas the cell
index j is the global coordinate (Frankel & Brenner 1989; Brenner & Edwards 1993). In
other words, the long-time diffusive dynamics holds only when the particles have traversed
many cells.

Because the ϕ space is unbounded, it is more convenient to work in Fourier space.
In the following, we make use of the flux-averaging approach of Brady and coworkers
(Morris & Brady 1996; Zia & Brady 2010; Takatori & Brady 2014, 2017; Burkholder &
Brady 2017; Peng & Brady 2020). We note that the original approach was developed for
the transport of particles in unbounded domains where the global coordinate is continuous
(e.g. the longitudinal coordinate along a flat channel). Recently, Barakat & Takatori (2023)
extended this approach to accommodate the transport and dispersion in an oscillating array
of harmonic traps, where the global coordinate is the discrete cell index of the infinite
lattice. (An equivalent real-space approach may be taken where one makes use of the
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Rotational Taylor dispersion in linear flows

method of moments; see, e.g. Brenner 1980; Alonso-Matilla et al. 2019.) In the current
problem, we have a one-dimensional lattice of unit cells. Following Barakat & Takatori
(2023), we introduce the semi-discrete Fourier transform (Trefethen 2000)

f̂ (k) = 2π

∞∑
j=−∞

exp(−ikj2π) fj, (2.6)

where k is the wavenumber and i (i2 = −1) is the imaginary unit. Note that the transform
is from j to k, and the local coordinate φ is unchanged. In Fourier space, the Smoluchowski
equation becomes

∂Ψ̂

∂t
+
(

ik + ∂

∂φ

)[
ΩΨ̂ − DR

(
ik + ∂

∂φ

)
Ψ̂

]
= 0, (2.7)

where Ψ̂ = Ψ̂ (k, φ, t) is the Fourier transform of Ψ . We note that in (2.7) the local
gradient is written in real space whereas the global gradient appears in powers of k. The
cell-averaged distribution,

〈Ψ̂ 〉(k, t) = 1
2π

∫ 2π

0
Ψ̂ (k, φ, t) dφ, (2.8)

satisfies

∂〈Ψ̂ 〉
∂t

+ ik〈ΩΨ̂ 〉 + DRk2〈Ψ̂ 〉 = 0, (2.9)

which is obtained by averaging (2.7). In writing (2.9) we have invoked the periodic
boundary condition on the local coordinate φ (Barakat & Takatori 2023). One can
relate Ψ̂ to its average by defining the structure function Ĝ such that Ψ̂ (k, φ, t) =
〈Ψ̂ 〉(k, t)Ĝ(k, φ, t). The structure function is normalized, i.e.

〈Ĝ〉 = 1. (2.10)

To derive an effective advection-diffusion equation for 〈Ψ̂ 〉, we first take a small
wavenumber expansion of Ĝ (Morris & Brady 1996; Zia & Brady 2010), giving

Ĝ(k, φ, t) = g(φ, t) + ikb(φ, t) + O(k2), (2.11)

where g is the average (zero wavenumber) field and b is the displacement field. Inserting
the expansion 〈ΩΨ̂ 〉 = 〈Ψ̂ 〉〈Ω(g + ikb)〉 + O(k2) into (2.9), we obtain

∂〈Ψ̂ 〉
∂t

+ ikΩeff 〈Ψ̂ 〉 + k2Deff 〈Ψ̂ 〉 = 0, (2.12a)

Ωeff = 〈Ωg〉, Deff = DR − 〈Ωb〉. (2.12b)

Note that (2.12a) is an effective advection–diffusion equation in Fourier space, with the
effective rotational drift and rotational dispersion coefficient given in (2.12b).
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Subtracting (2.9) multiplied by Ĝ from (2.7), we obtain

∂Ĝ
∂t

+ ik

[(
Ω − 〈ΩΨ̂ 〉

〈Ψ̂ 〉

)
Ĝ − DR

∂Ĝ
∂φ

]
+ ∂

∂φ

[
ΩĜ − DR

(
ik + ∂

∂φ

)
Ĝ
]

= 0. (2.13)

Inserting the expansion (2.11) into (2.13), at O(1) we obtain

∂g
∂t

+ ∂

∂φ

(
Ωg − DR

∂g
∂φ

)
= 0. (2.14)

At O(k), we have

∂b
∂t

+ ∂

∂φ

(
Ωb − DR

∂b
∂φ

)
= 2DR

∂g
∂φ

+
(
Ωeff − Ω

)
g. (2.15)

The average displacement field vanishes: 〈b〉 = 0. Equations (2.12), (2.14) and (2.15) are
the main results of this paper.

It follows that for a particle undergoing a steady rotation (Ω = const.), g = 1 and b = 0,
which implies that Ωeff = Ω and Deff = DR. As a result, a non-uniform or q-dependent
angular velocity is required to achieve a long-time dispersivity that is potentially different
from the bare diffusivity DR. To calculate the average drift, one needs to solve (2.14) and
then take the average of Ωg. With the solution of (2.14), one can solve (2.15) and then use
(2.12b) to calculate the dispersion coefficient.

3. Results

3.1. Simple shear
Consider the simple shear flow given by u = γ̇ yex, where ex is the unit basis vector in the
x direction of the Cartesian coordinate system (x, y, z), γ̇ is the shear rate. The problem is
non-dimensionalized using the time scale τR = 1/DR. Two dimensionless groups dictate
the behaviour of the problem. The first is a Péclet number, Pe = γ̇ τR, which compares
the time scale of the flow to that of rotational diffusion. The second parameter is the
Bretherton constant that characterizes the aspect ratio of the spheroid (Bretherton 1962).
The non-dimensional (scaled by τR) angular velocity is

ΩτR = −1
2 Pe[1 − B cos(2φ)]. (3.1)

For spherical particles, B = 0, and the angular velocity is a constant, ΩτR = −Pe/2.
In this case, g = 1 and Ωeff = Ω . From (2.15), we readily obtain b = 0 and Deff =
DR. Because the angular velocity is a constant, the average drift is simply the angular
velocity of the flow and the flow does not affect the dispersion coefficient. Similar to
the classical Taylor dispersion in which a spatially non-uniform advection is present,
an orientation-dependent angular velocity is required to have potentially flow-enhanced
dispersion (Leahy et al. 2013, 2015).

To probe the effect of non-uniform angular velocity on the long-time drift and
dispersion, we seek a regular series solution by writing

g =
∞∑

n=0

Bngn and b =
∞∑

n=0

Bnbn. (3.2a,b)
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Figure 1. (a) Plots of the average angular drift velocity scaled by the sphere result as a function of Pe for
different values of B. (b) Plots of the non-dimensional effective long-time dispersion coefficient as a function
of Pe for different values of B. For spheres (B = 0), the dispersion coefficient is not affected by the flow. For
non-spherical particles, shear-enhanced dispersion is observed.

The resulting drift and dispersion coefficient are written as, respectively,

Ωeff τR =
∞∑

n=0

BnΩeff
n and

Deff

DR
=

∞∑
n=0

BnDeff
n . (3.3a,b)

We calculate the series solution up to O(B6) in Appendix A. The drift terms are given by

Ω
eff
0 = −1

2
Pe, Ω

eff
2 = Pe3

4Pe2 + 64
, Ω

eff
4 = Pe5(Pe2 − 80)

16(Pe2 + 16)2(Pe2 + 64)
, (3.4a)

Ω
eff
6 = (Pe − 4)Pe7(Pe + 4)(Pe2 − 368)

32(Pe2 + 16)3(Pe2 + 64)(Pe2 + 144)
, (3.4b)

where the odd terms are zero. For the dispersion coefficient, we obtain

Deff
0 = 1, Deff

2 = Pe2(3Pe2 − 16)

2(Pe2 + 16)2 , (3.5a)

Deff
4 = Pe4(3Pe6 − 124Pe4 − 12992Pe2 + 20480)

2(Pe2 + 16)3(Pe2 + 64)2 , (3.5b)

Deff
6 = 3CPe6

2(Pe2 + 16)4(Pe4 + 208Pe2 + 9216)2 , (3.5c)

where C = −36175872 + 51011584Pe2 − 919040Pe4 − 47328Pe6 − 170Pe8 + Pe10 and
odd terms vanish.

In figure 1 we plot the average drift scaled by the drift of a sphere and the dispersion
coefficient as a function of Pe for several values of B. The scaled drift is shown in
figure 1(a) and the non-dimensional dispersion coefficient is plotted in figure 1(b). The
truncated series solution is shown by dashed lines. The circles in figure 1 are results
obtained by solving (2.14) and (2.15) at steady state using a Fourier collocation method.
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The squares are from BD simulations of the orientational Langevin equation. In two
dimensions, the Langevin equation (dimensional) is written as dϕ/dt = Ω + √

2DRξ ,
where ξ is a white-noise process satisfying ξ(t) = 0 and ξ(t)ξ(t′) = δ(t − t′). Here, the
overhead bar denotes an ensemble average and δ is the delta function. We remark that in
the Langevin equation, the unbounded angular coordinate ϕ is used in order to calculate
the mean and mean-squared angular displacements, from which the drift and dispersion
coefficient can be obtained. The full numerical solutions (circles) of (2.14) and (2.15) agree
with the results from BD (squares), which validates our theory.

For spheres, B = 0, and the drift is equal to the constant angular velocity. As B increases,
the drift decreases compared with that of the sphere because the alignment term due to the
rate of strain becomes more important. In the limit Pe → 0, the drift of non-spherical
particles approaches that of spheres, Ωeff /Ω

eff
B=0 → 1. The reduction of the scaled drift

occurs at non-zero Pe and is most prominent for large Pe where the scaled drift asymptotes
to a plateau as Pe → ∞. For non-spherical particles, we observe a shear-enhanced
angular dispersion as shown in figure 1(b). Similar to the classical Taylor dispersion
in linear position space, the enhanced angular dispersion is a result of the coupling
between non-uniform advection and diffusion. For spheres, the angular velocity is constant
and no shear-enhanced dispersion is observed. When B > 0, the dispersion coefficient
increases monotonically as a function of Pe until it asymptotes to a plateau at large Pe. In
dimensional terms, we have Deff /DR = O(Pe0) as Pe → ∞, which is different from the
classical Taylor dispersion of Brownian solutes in Poiseuille flow where Deff /DT ∼ Pe2

as Pe → ∞. For dispersion in position space, DT is the translational diffusivity and
Pe = UL/DT with U the characteristic fluid velocity and L the characteristic width of
the channel. We further note that Brownian particles in unbounded shear flows exhibit
anomalous diffusion in position space (San Miguel & Sancho 1979; Foister & Van De Ven
1980; Krishnan & Leighton 1992; Katayama & Terauti 1996; Orihara & Takikawa 2011;
Takikawa & Orihara 2012).

To understand the behaviour of the system at large Pe, we consider a perturbation
expansion in powers of 1/Pe,

g = g0 + 1
Pe

g1 + 1
Pe2 g2 + · · · , (3.6a)

b = b0 + 1
Pe

b1 + 1
Pe2 b2 + · · · . (3.6b)

Inserting the expansion (3.6a) into (2.14), one can solve the resulting equations order by
order. We derive after some algebra that

g0 =
√

1 − B2

1 − B cos(2φ)
, (3.7a)

g1 = 4B
√

1 − B2 sin(2φ)

[1 − B cos(2φ)]3 . (3.7b)

We note that in obtaining the preceding solutions, the conservation conditions 〈g0〉 = 1
and 〈g1〉 = 0 are enforced. From (3.7), we obtain

Ωeff

Ω
eff
B=0

=
√

1 − B2 + O(1/Pe2) as Pe → ∞. (3.8)

As Pe → ∞, the scaled drift approaches a finite value that depends on B. Due to symmetry,
the function g1 does not contribute to the drift. The correction is O(1/Pe2), which comes
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Figure 2. Plots of numerical solutions (dashed) at Pe = 1000 and the leading-order asymptotic solutions
(dotted) at large Pe for (a) the average field and (b) the displacement field. In the plots, B = 0.6. The numerical
and asymptotic solutions have excellent agreement and cannot be distinguished visually.

from g2 in the expansion. In figure 2(a) the leading-order asymptotic solution g0 is plotted
as a function of φ for B = 0.6. The full numerical solution of (2.14) at Pe = 1000 and
B = 0.6 is also shown in figure 2(a). In figure 4(a) we plot the leading-order drift given
in (3.8) as a function of B and the numerical solution of the macrotransport equations for
Pe = 1000. Good agreement between the asymptotic and numerical solutions is observed.

Substituting (3.6b) and (3.7) into (2.15), we obtain at O(1),

∂

∂φ

[
−1

2
(1 − B cos(2φ))b0

]
=
[
−1

2

√
1 − B2 + 1

2
(1 − B cos(2φ))

]
g0, (3.9)

where we have used (3.8). Defining

b̃0(φ) =
√

1 − B2

1 − B cos(2φ)

[
arctan

(
(1 + B) tan φ√

1 − B2

)
− φ

]
, 0 ≤ φ ≤ π/2, (3.10)

one can write the solution at O(1) as

b0(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b̃0(φ), 0 ≤ φ ≤ π/2,

−b̃0(π − φ), π/2 ≤ φ ≤ π,

b̃0(φ − π), π ≤ φ ≤ 3π/2,

−b̃0(2π − φ), 3π/2 ≤ φ ≤ 2π.

(3.11)

In figure 2(b) the leading-order asymptotic solution b0 is plotted as a function of φ for
B = 0.6. The full numerical solution of (2.15) at Pe = 1000 and B = 0.6 is also shown in
figure 2(b). Good agreement between the asymptotic and numerical solutions is observed.
Because of the symmetry of Ω and b0, the average 〈Ωb0〉 vanishes.

To obtain the first non-zero term of shear-induced dispersion, we therefore need to
consider the O(1/Pe) solution to b. At O(1/Pe), the displacement field equation is given
by

∂

∂φ

[
−1

2
[1 − B cos(2φ)]b1 − ∂b0

∂φ

]
= 2

∂g0

∂φ
. (3.12)

Similar to (3.10), we define

b̃1(φ) = 4B
√

1 − B2 sin(2φ)

[1 − B cos(2φ)]3

[
arctan

(
(1 + B) tan φ√

1 − B2

)
− φ

]
+ 3B2 − 3

[1 − B cos(2φ)]3 ,

(3.13)
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Figure 3. Plots of numerical solutions (dashed) at Pe = 1000 and the O(1/Pe) asymptotic solutions (dotted)
at large Pe for (a) the average field and (b) the displacement field. In the plots, B = 0.6. The numerical
approximation to g1 is obtained via gnum

1 = Pe(gnum − g0), where the superscript ‘num’ denotes a numerical
solution and g0 is given in (3.7a). Similarly, bnum

1 = Pe(bnum − b0). The numerical and asymptotic solutions
have excellent agreement and cannot be distinguished visually.

which is valid for φ ∈ [0, π/2]. Using (3.13), a particular solution to b1 is constructed as

bp
1(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b̃1(φ), 0 ≤ φ ≤ π/2,

b̃1(π − φ), π/2 ≤ φ ≤ π,

b̃1(φ − π), π ≤ φ ≤ 3π/2,

b̃1(2π − φ), 3π/2 ≤ φ ≤ 2π.

(3.14)

The full solution can be written as

b1(φ) = B2 + √
1 − B2 + 2

1 − B2
1

1 − B cos(2φ)
+ bp

1(φ), (3.15)

where the first term on the right-hand side is the homogeneous solution. To compare
the O(1) asymptotic solutions with numerical solutions, we first construct a hybrid
approximation to g1, given by gnum

1 = Pe(gnum − g0), where the superscript ‘num’ denotes
the numerical solution. In figure 3(a), gnum

1 is compared with the asymptotic solution g1,
and good agreement is observed. Similarly, we define bnum

1 = Pe(bnum − b0). The results
for bnum

1 and b1 are plotted in figure 3(b).
Using (3.15) and the expansion

Deff = Deff
0 + 1

Pe
Deff

1 + · · · , (3.16)

we obtain

Deff
0

DR
= 1 +

〈
1
2

[1 − B cos(2φ)]b1

〉
= 2 + B2

2(1 − B2)
. (3.17)

In figure 4(b) we compare the asymptotic solution given in (3.17) with the full numerical
solution of the macrotransport equations for Pe = 1000. We note that (3.17) agrees with
the result obtained by Leahy et al. (2015) where a coordinate transformation is employed
to map the orientational dynamics to a diffusion equation in the large-Pe limit. In contrast
to their approach, the current theory follows closely the GTD framework and allows us
to calculate both the average drift and effective dispersion for arbitrary Péclet numbers in
generic linear flows.
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Rotational Taylor dispersion in linear flows
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Figure 4. Plots of numerical solutions (circles) at Pe = 1000 and the leading-order asymptotic solutions
(dashed) at large Pe for (a) the scaled drift and (b) the dispersion coefficient.
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5π/4

7π/4

π/4

(a) (b)

Figure 5. (a) Schematic of the extensional flow. (b) Schematic of the direction of rotation due to the
extensional flow.

3.2. Extensional flow
As another case study, we now consider an extensional flow where the angular velocity
is Ω = PeB cos(2φ)ez. The extensional flow tends to align the particle orientation with
the extensional axis (see figure 5). The particle has a non-zero angular velocity when the
orientation deviates from the extensional axis. As shown in figure 5(b), the direction of
rotation depends on the particle orientation relative to the extensional axis.

The average field in the extensional flow is governed by

∂

∂φ

(
B Pe cos(2φ)g − ∂g

∂φ

)
= 0. (3.18)

Because the particle can align with both directions of the extensional axis (φ = π/4 and
5π/4 in figure 5b), the average field has a periodicity of π, g(φ + π) = g(φ). Defining
φ′ = φ − π/4, we consider g in the interval φ′ ∈ [−π/2, π/2]. In terms of the shifted
variable φ′, we have

∂

∂φ′

(
B Pe sin(2φ′)g − ∂g

∂φ′

)
= 0, φ′ ∈

[
−π

2
,
π

2

]
. (3.19)

From (3.19), we see that g is an even function of φ′; this can also be understood by
examining figure 5(b). The average angular drift 〈Ωg〉 vanishes because Ωg is an odd
function of φ′ in the interval φ′ ∈ [−π/2, π/2].

Integrating (3.18) once, we obtain

B Pe cos(2φ)g − ∂g
∂φ

= C1. (3.20)
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Figure 6. Plots of the effective dispersion coefficient as a function of Pe B in the extensional flow. Circles
are results obtained from the numerical solution of the Taylor dispersion theory, squares are results calculated
from BD simulations and the dashed line denotes the leading-order asymptotic solution for small Pe B given in
(3.25).

Averaging the above equation over one period, we have 〈Ωg〉 = C1. Because 〈Ωg〉 = 0 as
determined from symmetry, we must have C1 = 0. With this, we obtain

g(φ) = 1
A1

exp
(

1
2

B Pe sin(2φ)

)
, φ ∈ [0, 2π], (3.21)

where A1 is determined from 〈g〉 = 1.
The displacement field in the extensional flow satisfies

∂

∂φ

(
B Pe cos(2φ)b − ∂b

∂φ

)
= 2

∂g
∂φ

− B Pe cos(2φ)g = ∂g
∂φ

. (3.22)

Because (3.22) does not admit a simple closed-form analytic solution, we instead seek
pertubative solutions in the following two limits: (1) Pe B � 1 and (2) Pe B 
 1.

In the small Pe B limit, we write

g(φ) = 1 + Pe Bg1(φ) + · · · , (3.23a)

b(φ) = 0 + Pe Bb1(φ) + · · · , (3.23b)

where
g1 = 1

2 sin(2φ) and b1 = 1
4 cos(2φ). (3.24a)

From this, we determine the dispersion coefficient as

Deff

DR
= 1 − (Pe B)2〈cos(2φ)b1〉 + O(Pe4B4) = 1 − 1

8
Pe2B2 + O(Pe4B4). (3.25)

In figure 6 we plot the effective dispersion coefficient as a function of Pe B in the
extensional flow. The leading-order asymptotic solution for small Pe B in (3.25) is denoted
by the dashed line. In the small Pe B regime, the asymptotic solution agrees well with both
the full numerical solution (circles) of the macrotransport equations and results obtained
from BD simulations (squares). In the extensional flow, rotational dispersion is hindered
and the dispersion coefficient vanishes in the large Pe B limit. Because the extensional
flow acts to align the particle orientation with the extensional axis, in the strong flow limit
random reorientations are suppressed.

We now consider the probability distributions in the strong flow limit characterized
by ε = 1/(Pe B) � 1. In the limit Pe B → ∞ or ε → 0, the orientational distribution
becomes a delta function localized at φ0 = π/4 due to strong alignment. For strong
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Rotational Taylor dispersion in linear flows
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Figure 7. (a) Plots of the numerical solution of g (dashed) at Pe B = 20 and the leading-order asymptotic
solution (dotted) given in (3.29). (b) Plots of the numerical solution of b (dashed) at Pe B = 20 and the
leading-order asymptotic solution (dotted) given in (3.33).

flow, the particle orientation is closely aligned with the extensional axis, which implies
the existence of a boundary layer near φ0 = π/4. A dominant balance reveals that
the boundary layer thickness is O(

√
ε). Introducing the stretched coordinate ξ = (φ −

φ0)/
√

ε, we rewrite (3.18) in the boundary layer as

∂

∂ξ

(
cos(2φ0 + 2ε1/2ξ)g̃ − √

ε
∂ g̃
∂ξ

)
= 0, (3.26)

where g̃(ξ) = g(φ). Noting that cos(2φ0) = 0 and cos(2φ0 + 2ε1/2ξ) = −2ξ
√

ε +
4
3ξ3ε3/2 − 4

15ξ5ε5/2 + O(ε7/2), we expect an expansion of the form

g̃ = 1√
ε

g̃0 + · · · , (3.27)

where the leading-order term is O(1/
√

ε) due to the conservation of probability. In the
bulk (outside the boundary layer), the orientational distribution is zero to algebraic orders
of

√
ε.

The leading-order orientational distribution is governed by

∂

∂ξ

(
2ξ g̃0 + ∂ g̃0

∂ξ

)
= 0, (3.28)

which admits a solution of the form g̃0 = A0e−ξ2
, where A0 remains to be determined.

In writing the solution, we have made use of the matching condition g̃ → 0 as ξ → ∞.
From the conservation, 〈g〉 = 1, we obtain A0 = √

π. Due to symmetry, the leading-order
solution is valid as φ approaches φ0 from either side. We then construct a leading-order
composite solution as

g =
√

π

ε
exp

(
−(φ − φ0)

2

ε

)
+ · · · , (3.29)

where the dots denote higher-order corrections. In figure 7(a) we compare the
leading-order solution in (3.29) with the numerical solution of the full equation for
Pe B = 20. We note that indeed the leading-order solution in (3.29) approaches a delta
function upon appropriate scaling in the limit ε → 0.

997 A10-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.856


Z. Peng

We now proceed to analyse the displacement field, which in the boundary layer is
expanded as

b̃ = b̃0 + · · · , (3.30)

where we remark that b̃ is O(1) at leading order. At leading order, we obtain

− ∂

∂ξ

(
2ξ b̃0 + ∂ b̃0

∂ξ

)
= 2ξ g̃0 + 2

∂ g̃0

∂ξ
. (3.31)

The equation is solved by

b̃0 = (C0 − √
πξ) e−ξ2

. (3.32)

Using the normalization condition 〈b〉 = 0, we must have
∫∞
−∞ b̃0 dξ = 0, which gives

C0 = 0. In terms of φ, we may write

b0(φ) = −√
π

φ − φ0√
ε

exp
(

−(φ − φ0)
2

ε

)
. (3.33)

In figure 7(b) we compare the leading-order solution of b in (3.33) with the numerical
solution of the full equation for Pe B = 20.

Taking the limit ε → 0, we obtain

Deff

DR
= 1 − 〈Ωb〉 → 1 − 1

π

∫ ∞

−∞
(−2)ξ b̃0(ξ) dξ = 0. (3.34)

As a result, we have shown that the dispersion coefficient vanishes in the strong flow
limit. This asymptotic result agrees with the full numerical solution and the BD simulation
results (see figure 6).

3.3. General linear flows
We now consider a general two-dimensional linear flow of the form u = γ̇ yex + αγ̇ xey,
where α is a dimensionless parameter that controls the characteristics of the external flow.
As a function of α, the flow varies from purely rotational (α = −1) to simple shear (α = 0)
and extensional flow (α = 1). From (2.1a,b), we obtain the angular velocity of the particle
as

ΩτR = 1
2 Pe[−1 + α + B(1 + α) cos(2φ)]. (3.35)

To probe the effect of α on the long-time rotational dispersion coefficient, we solve
the macrotransport equations (2.14) and (2.15) numerically using a Fourier collocation
method for Pe = 100. In figure 8 the numerical results are plotted as circles, and the
results obtained from BD simulations are marked by squares. The dispersion coefficient
exhibits a non-monotonic dependence on the flow parameter α. The maximum of the
dispersion coefficient is obtained when α = (1 − B)/(1 + B). For a general linear flow,
the angular velocity is a combination of a constant part (purely rotational) and a varying
part (extensional flow). For α = −1, the flow is purely rotational, and we have Deff = DR.
As α increases, the varying part of the angular velocity gives enhanced dispersion.
In the absence of the constant part (α = 1), particles becomes strongly aligned. As a
result, the dispersion is suppressed (see § 3.2). To achieve maximum enhancement in
dispersion, the two terms need to balance, which occurs when 1 − α = B(1 + α) or
α = (1 − B)/(1 + B). In figure 8 this value of α is marked by a vertical line for B = 0.6.
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Rotational Taylor dispersion in linear flows
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Figure 8. Plots of the dispersion coefficient as a function of α for Pe = 100 and B = 0.6. Circles are results
from numerical solutions of the macrotransport equations. Squares are results from BD simulations. The
vertical line is given by the equation α = (1 − B)/(1 + B). The solid line is the asymptotic solution in (3.41).

On the right side of the vertical line, the extensional flow becomes dominant, and the
dispersion coefficient decays to zero as α increases and approaches that of the extensional
flow (α = 1).

In the large-Pe limit, we consider a perturbation expansion in powers of 1/Pe,

g = g0 + 1
Pe

g1 + · · · , (3.36a)

b = b0 + 1
Pe

b1 + · · · . (3.36b)

Following the notations and calculations in § 3.1, we obtain

g0 = A1

1 − α − B(1 + α) cos(2φ)
, (3.37a)

g1 = 4B(1 + α)A1 sin(2φ)

[1 − α − B(1 + α) cos(2φ)]3 , (3.37b)

where A1 =
√

(1 − α)2 − B2(1 + α)2. We note that (3.37a) and (3.37b) are only valid in
the region 1 − α > B(1 + α), which is shown as the shaded region in figure 9. At the
boundary, 1 − α = B(1 + α), the solutions of (3.37a) and (3.37b) become singular at φ0,
where cos(2φ0) = 1 or φ0 ∈ {0, π, 2π}. One may similarly obtain the displacement field
as

b̃0 = A1

arctan
(

1 − α + B(1 + α)

A1
tan φ

)
− φ

1 − α − B(1 + α) cos(2φ)
, (3.38)

b̃1 =
C1

[
arctan

(
(1 − α + B(1 + α))

A1
tan φ

)
− φ

]
+ C2

[1 − α − B(1 + α) cos(2φ)]3 + C3

1 − α − B(1 + α) cos(2φ)
,

(3.39)
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Figure 9. Plot of the parameter space (α, B). The solid line is given by 1 − α = B(1 + α). In the shaded
region, we have 1 − α > B(1 + α).

where

C1 = 4B(1 + α)A1, C2 = −3A2
1, (3.40a)

C3 = B2(1 + α)2 + (1 − α)(2(1 − α) + A1)

A2
1

. (3.40b)

The leading-order dispersion coefficient can then be shown to be

Deff
0

DR
= 2(1 − α)2 + B2(1 + α)2

2(1 − α)2 − 2B2(1 + α)2 . (3.41)

For simple shear, α = 0, we recover (3.17). In figure 8 the solution of (3.41) for B = 0.6
is plotted as a solid line. The asymptotic solution agrees well with both the numerical
and BD results. As expected, the asymptotic solution deviates from the numerical or BD
results as α approaches the singular boundary where 1 − α = B(1 + α). Furthermore, the
solution of (3.41) becomes singular when 1 − α = B(1 + α).

In Appendix B, using asymptotic theory, we analyse the macrotransport equations and
characterize the long-time dispersion behaviour for the case of 1 − α = B(1 + α) in the
strong flow limit. When 1 − α = B(1 + α), our analysis reveals that there exist boundary
layers of thickness O(ε1/3) at φ = nπ, n ∈ Z, where ε = 1/(Pe(1 − α)). We show that
the dispersion coefficient is O(ε−2/3) as ε → 0. For a fixed α, this means that Deff /DR =
O(Pe2/3).

Our results show that depending on the parameters α and B, the rotational dispersion
coefficient exhibits distinctly different scaling in the large-Pe limit. For 1 − α > B(1 +
α), we have Deff /DR = O(1) as Pe → ∞. On the curve where 1 − α = B(1 + α), α /= 1,
Deff /DR = O(Pe2/3). Finally, for extensional flow, Deff /DR → 0 as Pe → ∞. We note
that as a function of α, the transition from the case of 1 − α = B(1 + α) to the vanishing
dispersion at α = 1 occurs in a small region, which is shown by the rapid decay of Deff

in figure 8. Within this small region, a perturbation analysis for a small deviation from the
curve 1 − α = B(1 + α) may be useful. Such an analysis is left for future considerations.

4. Concluding remarks

In this paper we have developed a GTD theory that describes the long-time rotational
dispersion of a spheroidal particle in linear flows that is constrained to rotate in the
velocity-gradient plane. As is standard for Taylor dispersion, the average drift and the
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Rotational Taylor dispersion in linear flows

effective dispersion are treated in a unified framework by leveraging a flux-averaging
method in Fourier space. The results obtained from the continuum theory are corroborated
by BD simulations of the orientational equation of motion. Using asymptotic analysis in
the strong flow limit, we have shown that a simple shear enhances while an extensional
flow hinders the long-time rotational dispersion. More specifically, we showed that
Deff /DR = O(1) in simple shear and Deff /DR → 0 in extensional flow as Pe → ∞ for
a given non-zero B. These results reveal that the long-time rotational dispersion depends
qualitatively on the characteristics of the background flow.

While we focused on the long-time dispersion in steady flows, our GTD theory applies
equally well to time-periodic flows such as oscillatory shear. In oscillatory shear one needs
to first obtain the long-time (time-dependent) solutions to the average and displacement
fields. In addition to the cell average employed for steady linear flows, a time average over
the oscillation period is needed to obtain the long-time transport coefficients.

In linear flows as considered in this paper, the angular velocity of the particle due to
the flow does not depend on the spatial position. This spatial uniformity allows us to
consider the conservation equation in orientation space only. A difficulty would arise if
one wishes to consider the rotational dispersion of a particle in flows in the presence of
no-slip boundaries such as pressure-driven channel flows. In such a quadratic flow field,
the angular velocity depends linearly on the transverse coordinate. Mathematically, the
marginalization of P(x, q, t) does not lead to a closed equation for Ψ (q, t). In this case,
one often needs to solve the full probability distribution P(x, q, t) in order to calculate the
long-time translational or rotational transport properties. As a concrete example, consider
the rotational dynamics of a ‘point’ Brownian particle in a planar Poiseuille flow. The
Smoluchowski equation can be written as

∂P
∂t

+ ∇ · (uP − DT∇P) + ∇R · (ΩP − DR∇P) = 0, (4.1)

where Ω depends on y, which is the transverse coordinate. Following the consideration
given in § 2, one can show that the average field is governed by

∂

∂y

(
−DT

∂g
∂y

)
+ ∂

∂φ

(
Ω( y)g − DR

∂g
∂φ

)
= 0. (4.2)

At the channel walls (y = ±H), the no-flux condition, −∂g/(∂y) = 0, is imposed.
The normalization involves both spatial and orientational integrals, which is given by
〈∫ H

−H g( y, φ) dy〉 = 1. Similarly, one may write down the governing equation for the
displacement field.

The rotational Taylor dispersion theory can accommodate particles of different shapes
such as chiral or ring-shaped particles (Singh, Koch & Stroock 2013). In the presence of
hydrodynamic translation–rotation coupling, one again needs to consider the dynamics
in both position and orientation space. In the case of general particle shapes, much like
the case of a Brownian particle in Poiseuille flow, one performs the marginalization to
obtain net orientational distributions after solving the average and displacement fields as
functions of both x and q.

The rotational Taylor dispersion theory is developed in two dimensions where
the particle rotates about a single axis. To accommodate particles that rotate in
three-dimensional space, one may consider the rotational dynamics about perpendicular
axes. For a particular chosen axis of rotation, one can then utilize the current theory to
characterize the long-time dynamics. We note that measuring rotational diffusion about
perpendicular axes in three dimensions has been used in experiments (Rogers et al. 2012;
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Carrasco-Fadanelli et al. 2024). To conclude, we also note that similar to classical Taylor
dispersion, our theory is only valid at long times.
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Appendix A. Asymptotic solution in simple shear

In this appendix we discuss the asymptotic solution for nearly spherical particles in simple
shear in two dimensions. Inserting the expansion (3.2a,b) into (2.14), we obtain at steady
state

1
2

Pe
∂gn

∂φ
+ ∂2gn

∂φ2 = 1
2

Pe
∂

∂φ
[cos(2φ)gk−1], (A1)

where k = 1, 2, . . . . The normalization becomes 〈g0〉 = 1 and 〈gk〉 = 0 for k = 1, 2, . . . .
The first four terms in the expansion are written as

g0(φ) = 1, g1(φ) = a11 cos(2φ) + a12 sin(2φ), (A2a)

g2(φ) = a21 cos(4φ) + a22 sin(4φ), (A2b)

g3(φ) = a31 cos(2φ) + a32 sin(2φ) + a33 cos(6φ) + a34 sin(6φ), (A2c)

where

a11 = Pe2

Pe2 + 16
, a12 = 4Pe

Pe2 + 16
, (A3a)

a21 = Pe2(Pe2 − 32)

2(Pe2 + 16)(Pe2 + 64)
, a22 = 6Pe3

(Pe2 + 16)(Pe2 + 64)
, (A3b)

a31 = Pe4(Pe2 − 80)

4(Pe2 + 16)2(Pe2 + 64)
, (A3c)

a32 = − Pe3(−16Pe4 − 2176Pe2 + 18432)

4(Pe2 + 16)2(Pe2 + 64)(Pe2 + 144)
, (A3d)

a33 = − Pe3(2816Pe − Pe3(Pe2 − 160))

4(Pe2 + 16)2(Pe2 + 64)(Pe2 + 144)
, (A3e)

a34 = − Pe3(6144 − 24Pe4)

4(Pe2 + 16)2(Pe2 + 64)(Pe2 + 144)
. (A3f )

The solution at O(B4) is written as

g4(φ) = a41 cos(4φ) + a42 sin(4φ) + a43 cos(8φ) + a44 sin(8φ), (A4)
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where

a41 = Pe2(a31 + a33) − 8Pe(a32 + a34)

2(Pe2 + 64)
, (A5a)

a42 = 8Pe(a31 + a33) + Pe2(a32 + a34)

2(Pe2 + 64)
, (A5b)

a43 = Pe(Pe a33 − 16a34)

2(Pe2 + 256)
, a44 = Pe(16a33 + Pe a34)

2(Pe2 + 256)
. (A5c)

The solution at O(B5) is given by

g5(φ) = a51 cos(2φ) + a52 sin(2φ) + a53 cos(6φ)

+ a54 sin(6φ) + a55 cos(10φ) + a56 sin(10φ), (A6)

where

a51 = Pe(a41Pe − 4a42)

2(Pe2 + 16)
, a52 = Pe(4a41 + a42Pe)

2(Pe2 + 16)
, (A7a)

a53 = Pe2(a41 + a43) − 12Pe(a42 + a44)

2(Pe2 + 144)
, a54 = 12Pe(a41 + a43) + Pe2(a42 + a44)

2(Pe2 + 144)
,

(A7b)

a55 = Pe(a43Pe − 20a44)

2(Pe2 + 400)
, a56 = Pe(20a43 + a44Pe)

2(Pe2 + 400)
. (A7c)

The solution at O(B6) is given by

g6(φ) = a61 cos(4φ) + a62 sin(4φ) + a63 cos(8φ)

+ a64 sin(8φ) + a65 cos(12φ) + a66 sin(12φ), (A8)

where

a61 = Pe2(a51 + a53) − 8Pe(a52 + a54)

2(Pe2 + 64)
, a62 = 8Pe(a51 + a53) + Pe2(a52 + a54)

2(Pe2 + 64)
,

(A9a)

a63 = Pe2(a53 + a55) − 16Pe(a54 + a56)

2(Pe2 + 256)
, a64 = 16Pe(a53 + a55) + Pe2(a54 + a56)

2(Pe2 + 256)
,

(A9b)

a65 = Pe(a55Pe − 24a56)

2(Pe2 + 576)
, a66 = Pe(24a55 + a56Pe)

2(Pe2 + 576)
. (A9c)

Similarly, the displacement field can be solved order by order. At O(Bn), (2.15) is given
by

∂

∂φ

(
Ω0bn + Ω1bn−1 − ∂bn

∂φ

)
= 2

∂gn

∂φ
+
∑

i=n−j

∑
j

Ω
eff
i gj − (Ω0gn + Ω1gn−1), (A10)

where Ω0 = −1
2 Pe, Ω1 = 1

2 Pe cos(2φ) and n = 0, 1, . . . . In (A10), bk = 0 for k < 0. At
O(1), we have

∂

∂φ

(
Ω0b0 − ∂b0

∂φ

)
= 2

∂g0

∂φ
+ (Ω

eff
0 − Ω0)g0. (A11)
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Since g0 = 1, we have b0 = 0. At O(B), we have
∂

∂φ

(
Ω0b1 + Ω1b0 − ∂b1

∂φ

)
= 2

∂g1

∂φ
+ (Ω

eff
0 − Ω0)g1 + (Ω

eff
1 − Ω1)g0. (A12)

The solution is given by

b1(φ) = Pe
2(Pe2 + 16)2

[
Pe(Pe2 − 48) sin(2φ) + (64 − 12Pe2) cos(2φ)

]
. (A13)

At O(B2), we have

b2(φ) = Pe2

8(Pe2 + 16)2(Pe2 + 64)2 [−4Pe(17Pe4 + 208Pe2 − 19456) cos(4φ)

+ 3(Pe6 − 144Pe4 − 6656Pe2 + 32768) sin(4φ)]. (A14)

Following this procedure, we have

b3(φ) = c31 cos(2φ) + c32 sin(2φ) + c33 cos(6φ) + c34 sin(6φ), (A15a)

b4(φ) = c41 cos(4φ) + c42 sin(4φ) + c43 cos(8φ) + c44 sin(8φ), (A15b)

b5(φ) = c51 cos(2φ) + c52 sin(2φ) + c53 cos(6φ)

+ c54 sin(6φ) + c55 cos(10φ) + c56 sin(10φ), (A15c)

b6(φ) = c61 cos(4φ) + c62 sin(4φ) + c63 cos(8φ)

+ c64 sin(8φ) + c65 cos(12φ) + c66 sin(12φ), (A15d)

where cij can be readily obtained by inserting the expressions into (A10).

Appendix B. Asymptotic analysis for 1 − α = B(1 + α) in the strong flow limit

We develop an asymptotic solution in the large-Pe limit for a general linear flow under
the constraint that 1 − α = B(1 + α). Under this condition, we have ΩτR = −Pe(1 − α)

sin2 φ. For convenience, we define ε = 1/(Pe(1 − α)) and consider the behaviour of the
macrotransport equations when ε � 1. We note that α /= 1 is assumed.

The dimensionless average field at steady state, g = g(φ), is governed by

d
dφ

(sin2 φg) + ε
d2g
dφ2 = 0. (B1)

Noting that g(φ + π) = g(φ), we consider φ ∈ [−π/2, π/2]. The normalization is given
by

1
π

∫ π/2

−π/2
g(φ) dφ = 1. (B2)

An asymptotic solution to (B1) subject to the normalization condition (B2) has been
developed by Brenner (1970). Since the solution to g is required for the consideration
of the displacement field b, we first repeat the calculations of Brenner (1970) for g and
then proceed to consider b.

Integrating (B1) once, we obtain

sin2 φg + ε
dg
dφ

= C′(ε), (B3)

where we remark that C′ only depends on ε. In the bulk, we have sin2 φg ∼ C′ or
g ∼ C′/ sin2 φ. This bulk result breaks down when sin2 φg ∼ ε dg/(dφ) or φ = O(ε1/3),
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Figure 10. (a) Plots of the numerical and asymptotic solutions to the average angular drift velocity as a
function of 1/ε for B = 1, α = 0. (b) Plots of the numerical solutions to the non-dimensional effective
long-time dispersion coefficient as a function of 1/ε for B = 1, α = 0. The solid line is given by Deff /DR =
C̃ε−2/3, where C̃ is obtained from numerical data.

which suggests the existence of a boundary layer with thickness O(ε1/3) at φ = 0. In the
boundary layer, from (B3), we obtain g ∼ C′ε−2/3. Using the normalization condition
(B2), one can show that C′ = O(ε1/3). Following Brenner (1970), we define C′ = Cε1/3,
where C = O(1). In the bulk, we define g(φ) = Cε1/3H(φ; ε). Introducing the stretched
coordinate s = φ/ε1/3, we define g(s) = Cε−1/3Q(s; ε) in the boundary layer. Expanding
H and Q, we write

H = H0 + εH1 + · · · , Q = Q0 + ε2/3Q1 + · · · , (B4a,b)

where H0 = 1/ sin2 φ and Q0 is governed by

s2Q0(s) + dQ0

ds
= 1. (B5)

The solution to Q0 is given by

Q0(s) = exp(−s3/3)

∫ s

−∞
exp(r3/3) dr. (B6)

To leading order, the normalization condition reduces to

C
∫ +∞

−∞
Q0(s) ds = π, (B7)

which allows us to obtain

C = 35/6π

6
√

3(Γ (4/3))2 + 24/3√πΓ (7/6)
= 31/3π

[Γ (1/3)]2 , (B8)

where Γ (z) = ∫∞
0 tz−1 e−t dt is the gamma function and C ≈ 0.6313. We can construct

a leading-order composite solution to g as Cε−1/3Q0(φ/ε1/3). From this, we obtain
the leading-order drift as Ωeff τR = −Cε−2/3 + o(ε−2/3). In figure 10(a) we compare
the asymptotic result with the results from numerical solutions of the macrotransport
equations for B = 1 and α = 0 in the large-Pe regime.
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The displacement field is governed by

− d
dφ

(sin2 φb) − ε
d2b
dφ2 = 2ε

dg
dφ

+ ε(Ω∗eff − Ω∗)g, (B9)

where Ω∗eff = Ωeff τR and Ω∗ = ΩτR. Noting that the dominant term on the right-hand
side outside the boundary layer is εΩ∗g = O(ε1/3), we have b = O(ε1/3) in the bulk. In
the boundary layer, a dominant balance reveals that b = O(ε−1/3). While the resulting
equations are not analytically tractable, the above analysis allows us to show that
Deff /DR = O(ε−2/3) as ε → 0. In figure 10 we present the dispersion coefficient obtained
from numerical solutions of the macrotransport equations for B = 1 and α = 0 in the
large-Pe regime. The solid line has the form Deff /DR = C̃ε−2/3, where C̃ is a numerical
constant that fits the data closely.
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